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Course Title: Engineering Numerical Methods 

Course Code: ME 3202 

Course Units: 3 Credits 

Course Category: Department Requirement            

Course Instructor: Asst. Prof. Dr. Ghalib R. Ibrahim 

                                               

Course Learning Outcomes: 

By the end of successful completion of this course, the student will be able to: 

1. To gain experience in error analysis. 

2. Understanding the different numerical methods to solve systems of 

linear and nonlinear equations. 

3. Understanding the different numerical methods for differentiation, 

integration, and solving a set of ordinary differential equations. 

4. Understanding how numerical methods can be implemented in 

MATLAB software. 
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Numerical analysis Course Code: ME  3202 
 

 

 

 

Topics 

 

• Error Analysis 

• Roots of equations 

• Solving system of linear equations 

• Integration and differentiation 

• Ordinary differential equations 
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Measuring Errors 
 

 

 

 

Q: What is true error? 

A: True error denoted by tE  is the difference between the true value (also called the exact 

value) and the approximate value. 

True Error =  True value – Approximate value 

 

Example 1 

The derivative of a function )(xf  at a particular value of x  can be approximately calculated 

by 

h

xfhxf
xf

)()(
)(

−+
  

 of )2(f   For xexf 5.07)( =  and 3.0=h , find 

 a) the approximate value of )2(f   

 b) the true value of )2(f   

 c) the true error for part (a) 

Solution 

a)  
h

xfhxf
xf

)()(
)(

−+
  

For 2=x  and 3.0=h ,  

3.0

)2()3.02(
)2(

ff
f

−+
  

          
3.0

)2()3.2( ff −
=  

                     
3.0

77 )2(5.0)3.2(5.0 ee −
=  

          
3.0

028.19107.22 −
=  

                     265.10=  

b) The exact value of )2(f  can be calculated by using our knowledge of differential calculus. 
xexf 5.07)( =  

xexf 5.05.07)(' =  

          
xe 5.05.3=  

So the true value of )2('f  is 
)2(5.05.3)2(' ef =  

           5140.9=  

c) True error is calculated as 



Measuring Errors                                                                                                      

 

3 

 

 tE = True value – Approximate value 

                265.105140.9 −=  

     75061.0−=  

The magnitude of true error does not show how bad the error is.  A true error of 722.0−=tE  

may seem to be small, but if the function given in the Example 1 

were ,107)( 5.06 xexf −= the true error in calculating )2(f   with ,3.0=h  would be 

.1075061.0 6−−=tE   This value of true error is smaller, even when the two problems are 

similar in that they use the same value of the function argument, 2=x  and the step size, 

3.0=h .  This brings us to the definition of relative true error. 

 

Q: What is relative true error? 

A:  Relative true error is denoted by t  and is defined as the ratio between the true error and 

the true value. 

Relative True Error 
Value True

Error True
=  

 

Example 2 

The derivative of a function )(xf  at a particular value of x  can be approximately calculated 

by 

h

xfhxf
xf

)()(
)('

−+
  

For xexf 5.07)( =  and 3.0=h , find the relative true error at 2=x . 

Solution 

From Example 1,  

tE = True value – Approximate value 

                265.105140.9 −=  

     75061.0−=  

Relative true error is calculated as 

Value True

Error True
=t  

     
5140.9

75061.0−
=  

                078895.0−=  

Relative true errors are also presented as percentages. For this example, 

%1000758895.0 −=t  

     %58895.7−=  

Absolute relative true errors may also need to be calculated. In such cases, 

|075888.0| −=t  

                  = 0.0758895 

                  = %58895.7  
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Q: What is approximate error? 

A: In the previous section, we discussed how to calculate true errors.  Such errors are 

calculated only if true values are known.  An example where this would be useful is when 

one is checking if a program is in working order and you know some examples where the 

true error is known.  But mostly we will not have the luxury of knowing true values as why 

would you want to find the approximate values if you know the true values.  So when we are 

solving a problem numerically, we will only have access to approximate values. We need to 

know how to quantify error for such cases. 

        Approximate error is denoted by aE  and is defined as the difference between the 

present approximation and previous approximation. 

       Approximate Error =Present Approximation – Previous Approximation 

 

Example 3 

The derivative of a function )(xf  at a particular value of x  can be approximately calculated 

by 

h

xfhxf
xf

)()(
)('

−+
  

For xexf 5.07)( = and at 2=x , find the following 

 a) )2(f   using 3.0=h  

 b) )2(f   using 15.0=h  

 c) approximate error for the value of )2(f   for part (b)  

Solution 

a) The approximate expression for the derivative of a function is 

 
h

xfhxf
xf

)()(
)('

−+
 . 

For 2=x  and 3.0=h ,  

3.0

)2()3.02(
)2('

ff
f

−+
  

           
3.0

)2()3.2( ff −
=  

                      
3.0

77 )2(5.0)3.2(5.0 ee −
=  

           
3.0

028.19107.22 −
=  

                      265.10=  

b) Repeat the procedure of part (a) with ,15.0=h  

h

xfhxf
xf

)()(
)(

−+
  

    For 2=x  and 15.0=h ,  

15.0

)2()15.02(
)2('

ff
f

−+
  



Measuring Errors                                                                                                      

 

5 

 

          
15.0

)2()15.2( ff −
=  

          
15.0

77 )2(5.0)15.2(5.0 ee −
=  

          
15.0

028.1950.20 −
=  

          8799.9=  

c) So the approximate error, aE is  

             =aE Present Approximation – Previous Approximation 

                   265.108799.9 −=  

                   38474.0−=  

The magnitude of approximate error does not show how bad the error is .  An approximate 

error of 38300.0−=aE  may seem to be small; but for xexf 5.06107)( −= , the approximate 

error in calculating )2('f  with 15.0=h  would be 61038474.0 −−=aE . This value of 

approximate error is smaller, even when the two problems are similar in that they use the 

same value of the function argument, 2=x , and 15.0=h  and 3.0=h . This brings us to the 

definition of relative approximate error. 

 

Q: What is relative approximate error? 

A: Relative approximate error is denoted by a  and is defined as the ratio between the 

approximate error and the present approximation. 

             Relative Approximate Error 
ionApproximatPresent 

Error eApproximat
=  

Example 4 

The derivative of a function )(xf  at a particular value of x  can be approximately calculated 

by 

h

xfhxf
xf

)()(
)('

−+
  

For xexf 5.07)( = , find the relative approximate error in calculating )2(f  using values from 

3.0=h  and 15.0=h . 

Solution 

From Example 3, the approximate value of 263.10)2( =f  using 3.0=h  and 

8800.9)2(' =f using 15.0=h . 

=aE Present Approximation – Previous Approximation 

                    265.108799.9 −=  

                    38474.0−=  

The relative approximate error is calculated as  

=a
ionApproximatPresent 

Error eApproximat
 

                 
8799.9

38474.0−
=  
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                 038942.0−=  

Relative approximate errors are also presented as percentages. For this example, 

%100038942.0 −=a  

                 = %8942.3−  

Absolute relative approximate errors may also need to be calculated.  In this example 

|038942.0| −=a  

                  038942.0=  or 3.8942% 

 

Q: While solving a mathematical model using numerical methods, how can we use relative 

approximate errors to minimize the error? 

A: In a numerical method that uses iterative methods, a user can calculate relative 

approximate error a  at the end of each iteration.  The user may pre-specify a minimum 

acceptable tolerance called the pre-specified tolerance, s .  If the absolute relative 

approximate error a  is less than or equal to the pre-specified tolerance s , that is,  || a s , 

then the acceptable error has been reached and no more iterations would be required.

 Alternatively, one may pre-specify how many significant digits they would like to be 

correct in their answer.  In that case, if one wants at least m  significant digits to be correct in 

the answer, then you would need to have the absolute relative approximate error, 
m

a

− 2105.0|| %. 

 

Example 5 

If one chooses 6 terms of the Maclaurin series for xe  to calculate 
7.0e , how many significant 

digits can you trust in the solution? Find your answer without knowing or using the exact 

answer. 

Solution 

.................
!2

1
2

+++=
x

xe x  

Using 6 terms, we get the current approximation as  

!5

7.0

!4

7.0

!3

7.0

!2

7.0
7.01

5432
7.0 +++++e  

       0136.2=  

 Using 5 terms, we get the previous approximation as 

!4

7.0

!3

7.0

!2

7.0
7.01

432
7.0 ++++e  

      0122.2=  

The percentage absolute relative approximate error is 

100
0136.2

0122.20136.2


−
=a  

      %069527.0=  

Since %105.0 22−a , at least 2 significant digits are correct in the answer of  

 0136.27.0 e  
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Q: But what do you mean by significant digits?   

A: Significant digits are important in showing the truth one has in a reported number. For 

example, if someone asked me what the population of my county is, I would respond, “The 

population of the Hillsborough county area is 1 million”.  But if someone was going to give 

me a $100 for every citizen of the county, I would have to get an exact count.  That count 

would have been 1,079,587 in year 2003.  So you can see that in my statement that the 

population is 1 million, that there is only one significant digit, that is, 1, and in the statement 

that the population is 1,079,587, there are seven significant digits.  So, how do we 

differentiate the number of digits correct in 1,000,000 and 1,079,587?  Well for that, one may 

use scientific notation. For our data we show 

6

6

10079587.1587,079,1

101000,000,1

=

=
 

to signify the correct number of significant digits. 

Example 5 

Give some examples of showing the number of significant digits. 

Solution 

a) 0.0459 has three significant digits 

b) 4.590 has four significant digits 

c) 4008 has four significant digits 

d) 4008.0 has five significant digits 

e) 310079.1   has four significant digits 

f) 3100790.1   has five significant digits 

g) 31007900.1   has six significant digits 
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Sources of Error 
 

 

 

 Error in solving an engineering or science problem can arise due to several factors.  

First, the error may be in the modeling technique.  A mathematical model may be based on 

using assumptions that are not acceptable.  For example, one may assume that the drag force 

on a car is proportional to the velocity of the car, but actually it is proportional to the square 

of the velocity of the car.  This itself can create huge errors in determining the performance 

of the car, no matter how accurate the numerical methods you may use are.  Second, errors 

may arise from mistakes in programs themselves or in the measurement of physical 

quantities.  But, in applications of numerical methods itself, the two errors we need to focus 

on are 

1. Round off error 

2. Truncation error. 

 

Q: What is round off error? 

A: A computer can only represent a number approximately.  For example, a number like 
3

1
 

may be represented as 0.333333 on a PC.  Then the round off error in this case is  

30000003.0333333.0
3

1
=− . Then there are other numbers that cannot be represented 

exactly. For example,   and 2  are numbers that need to be approximated in computer 

calculations. 

 

 

Q: What is truncation error? 

A: Truncation error is defined as the error caused by truncating a mathematical procedure. 

For example, the Maclaurin series for 
xe is given as  

....................
!3!2

1
32

++++=
xx

xe x  

This series has an infinite number of terms but when using this series to calculate 
xe , only a 

finite number of terms can be used.  For example, if one uses three terms to calculate 
xe , 

then 

.
!2

1
2x

xex ++  

the truncation error for such an approximation is 



2 

 

Truncation error = ,
!2

1
2









++−

x
xe x  

       .......................
!4!3

43

++=
xx

 

But, how can truncation error be controlled in this example?  We can use the concept of 

relative approximate error to see how many terms need to be considered.  Assume that one is 

calculating 2.1e  using the Maclaurin series, then 

...................
!3

2.1

!2

2.1
2.11

32
2.1 ++++=e  

Let us assume one wants the absolute relative approximate error to be less than 1%.  In Table 

1, we show the value of 2.1e , approximate error and absolute relative approximate error as a 

function of the number of terms, n . 

n  2.1e  aE  %a  

1 1 - - 

2   2.2 1.2 54.546 

3 2.92 0.72 24.658 

4 3.208 0.288 8.9776 

5 3.2944 0.0864 2.6226 

6 3.3151 0.020736 0.62550 

   

Using 6 terms of the series yields a a < 1%. 

Q: Can you give me other examples of truncation error? 

A: In many textbooks, the Maclaurin series is used as an example to illustrate truncation 

error.  This may lead you to believe that truncation errors are just chopping a part of the 

series.  However, truncation error can take place in other mathematical procedures as well.  

For example to find the derivative of a function, we define 

( )
( ) ( )

x

xfxxf
xf

x 

−+
=

→0
lim  

But since we cannot use ,0→x we have to use a finite value of x , to give 

x

xfxxf
xf



−+


)()(
)(  

So the truncation error is caused by choosing a finite value of x as opposed to a .0→x  

       For example, in finding )3(f   for 2)( xxf = , we have the exact value calculated as 

follows. 
2)( xxf =  

From the definition of the derivative of a function,  

x

xfxxf
xf

x 

−+
=

→

)()(
lim)(

0
 

          
x

xxx

x 

−+
=

→

22

0

)()(
lim  



3 

 

          
x

xxxxx

x 

−++
=

→

222

0

)(2
lim  

          )2(lim
0

xx
x

+=
→

 

          x2=  

This is the same expression you would have obtained by directly using the formula from your 

differential calculus class 

 1)( −= nn nxx
dx

d
 

By this formula for  
2)( xxf =  

xxf 2)( =  

The exact value of )3(f   is 

32)3( =f  

         6=  

If we now choose 2.0=x , we get 

2.0

)3()2.03(
)3(

ff
f

−+
=  

           
2.0

)3()2.3( ff −
=  

            =
2.0

32.3 22 −
 

            
2.0

924.10 −
=  

            
2.0

24.1
=  

            2.6=  

We purposefully chose a simple function 2)( xxf =  with value of 2=x and 2.0=x  

because we wanted to have no round-off error in our calculations so that the truncation error 

can be isolated.  The truncation error in this example is 

.2.02.66 −=−  

Can you reduce the truncate error by choosing a smaller x ? 

Another example of truncation error is the numerical integration of a function, 

=
b

a

dxxfI )(  

 Exact calculations require us to calculate the area under the curve by adding the area 

of the rectangles as shown in Figure 2.  However, exact calculations requires an infinite 

number of such rectangles.  Since we cannot choose an infinite number of rectangles, we will 

have truncation error. 

 For example, to find  

 dxx
9

3

2
,  



4 

 

we have the exact value as 

 
9

3

2dxx

9

3

3

3








=

x
 

            






 −
=

3

39 33

 

            234=  

If we now choose to use two rectangles of equal width to approximate the area (see Figure 2) 

under the curve, the approximate value of the integral  

)69()()36()(
6

2

3

2

9

3

2 −+−=
== xx

xxdxx  

                       3)6(3)3( 22 +=  

                       10827+=  

                       135=  

        

y = x
2 

0

30

60

90

0 3 6 9 12

y

x

 
Figure 2   Plot of 2xy =  showing the approximate area under the curve from 3=x  to 

9=x  using two rectangles. 

 

 Again, we purposefully chose a simple example because we wanted to have no round 

off error in our calculations.  This makes the obtained error purely truncation.  The truncation 

error is 

99135234 =−  

Can you reduce the truncation error by choosing more rectangles as given in Figure 3?  What 

is the truncation error? 
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y = x
2 

0

30

60

90

0 1.5 3 4.5 6 7.5 9 10.5 12

y

x

 
Figure 3  Plot of 2xy =  showing the approximate area under the curve from 

3=x  to 9=x  using four rectangles. 
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Bisection Method of Solving a Nonlinear Equation 
 

 

 

 

 

 

What is the bisection method and what is it based on? 

One of the first numerical methods developed to find the root of a nonlinear equation 

0)( xf  was the bisection method (also called binary-search method).  The method is based 

on the following theorem.  

 

Theorem 

An equation 0)( xf , where )(xf  is a real continuous function, has at least one root 

between x  and ux  if 0)()( uxfxf   (See Figure 1).     

Note that if 0)()( uxfxf  , there may or may not be any root between x  and ux  

(Figures 2 and 3).  If 0)()( uxfxf  , then there may be more than one root between x  and 

ux  (Figure 4).  So the theorem only guarantees one root between x  and ux . 

 

Bisection method 

Since the method is based on finding the root between two points, the method falls 

under the category of bracketing methods. 

Since the root is bracketed between two points, x  and ux , one can find the mid-

point, mx  between x  and ux .  This gives us two new intervals  

1. x  and mx , and  

2. mx  and ux . 

 



2 

 

                                           
Figure 1   At least one root exists between the two points if the function is real, continuous, 

and changes sign. 

 

 

                                            
Figure 2   If the function )(xf  does not change sign between the two points, roots of the 

equation 0)( xf  may still exist between the two points. 

f (x) 

xℓ xu 
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Figure 3   If the function )(xf  does not change sign between two points, there may not be 

any roots for the equation 0)( xf  between the two points. 

 

 
Figure 4   If the function )(xf  changes sign between the two points, more than one root for 

the equation 0)( xf  may exist between the two points. 

 

Is the root now between x  and mx  or between mx  and ux ?  Well, one can find the sign of 

)()( mxfxf  , and if 0)()( mxfxf   then the new bracket is between x  and mx , otherwise, 

it is between mx  and ux .  So, you can see that you are literally halving the interval.  As one 

repeats this process, the width of the interval  uxx ,  becomes smaller and smaller, and you 

can zero in to the root of the equation 0)( xf .  The algorithm for the bisection method is 

given as follows. 

 

f (x) 

xℓ 

xu 
x 

f (x) 

xℓ xu 

x 

f (x) 

xℓ xu 

x 
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Algorithm for the bisection method 

The steps to apply the bisection method to find the root of the equation 0)( xf  are 

1. Choose x  and ux  as two guesses for the root such that 0)()( uxfxf  , or in other 

words, )(xf  changes sign between x  and ux . 

2. Estimate the root, mx , of the equation 0)( xf  as the mid-point between x  and ux  

as 

 
2

 
 = u

m

xx
x

  

3. Now check the following 

a) If 0)()( mxfxf  , then the root lies between x  and mx ; then  xx   and 

mu xx  .    

b) If 0)()( mxfxf  , then the root lies between mx  and ux ; then mxx   and 

uu xx  . 

c) If 0)()( mxfxf  ; then the root is mx .  Stop the algorithm if this is true. 

4. Find the new estimate of the root 

 
2

 
 = u

m

xx
x

  

            Find the absolute relative approximate error as 

 100  
 - 

 = 
new

oldnew


m

mm
a

x

xx
 

where 

           
new

mx  = estimated root from present iteration 

           
old

mx = estimated root from previous iteration 

5. Compare the absolute relative approximate error a  with the pre-specified relative 

error tolerance s .  If sa  , then go to Step 3, else stop the algorithm.  Note one 

should also check whether the number of iterations is more than the maximum 

number of iterations allowed.  If so, one needs to terminate the algorithm and notify 

the user about it. 

 

Example 1 

You are working for ‘DOWN THE TOILET COMPANY’ that makes floats for ABC 

commodes.  The floating ball has a specific gravity of 0.6 and has a radius of 5.5 cm.  You 

are asked to find the depth to which the ball is submerged when floating in water. 

The equation that gives the depth x  to which the ball is submerged under water is given by 

010993.3165.0 423  xx  

Use the bisection method of finding roots of equations to find the depth x  to which the ball 

is submerged under water.  Conduct three iterations to estimate the root of the above 

equation. Find the absolute relative approximate error at the end of each iteration, and the 

number of significant digits at least correct at the end of each iteration. 
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Solution 

From the physics of the problem, the ball would be submerged between 0x  and Rx 2 ,  

where  

ball,  theof radiusR  

that is 

Rx 20   

)055.0(20  x  

11.00  x  

 

 
                                                Figure 5   Floating ball problem. 

 

Lets us assume 

11.0 ,0  uxx  

Check if the function changes sign between x  and ux . 

4423 10993.310993.3)0(165.0)0()0()(   fxf   

4423 10662.210993.3)11.0(165.0)11.0()11.0()(   fxf u
 

Hence  

 0)10662.2)(10993.3()11.0()0()()( 44  ffxfxf u  

So there is at least one root between x  and ux , that is between 0 and 0.11. 

Iteration 1 

The estimate of the root is 

2

u
m

xx
x


   

      
2

11.00 
  

                 055.0   

        5423
10655.610993.3055.0165.0055.0055.0   fxf m  

   010655.610993.3)055.0()0()()( 44  ffxfxf m  
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Hence the root is bracketed between mx  and ux , that is, between 0.055 and 0.11.  So, the 

lower and upper limit of the new bracket is 

11.0 ,055.0  uxx  

At this point, the absolute relative approximate error a  cannot be calculated as we do not 

have a previous approximation. 

Iteration 2 

The estimate of the root is 

2

u
m

xx
x


   

      
2

11.0055.0 
  

      0825.0  

 4423 10622.110993.3)0825.0(165.0)0825.0()0825.0()(   fxf m
 

             010622.110655.60825.0055.0 45  ffxfxf m  

Hence, the root is bracketed between x  and mx , that is, between 0.055 and 0.0825.  So the 

lower and upper limit of the new bracket is 

0825.0 ,055.0  uxx  

The absolute relative approximate error a  at the end of Iteration 2 is 

100
new

oldnew





m

mm
a

x

xx
 

      100
0825.0

055.00825.0



  

      %33.33  

None of the significant digits are at least correct in the estimated root of 0825.0mx  

because the absolute relative approximate error is greater than 5%. 

Iteration 3 

2

u
m

xx
x


   

     
2

0825.0055.0 
  

     06875.0  
5423 10563.510993.3)06875.0(165.0)06875.0()06875.0()(   fxf m
 

0)105.563()10655.6()06875.0()055.0()()( 55  ffxfxf m  

Hence, the root is bracketed between x  and mx , that is, between 0.055 and 0.06875.  So the 

lower and upper limit of the new bracket is 

06875.0 ,055.0  uxx  

The absolute relative approximate error a  at the ends of Iteration 3 is 
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100
new

oldnew





m

mm
a

x

xx
 

       100
06875.0

0825.006875.0



  

       %20  

Still none of the significant digits are at least correct in the estimated root of the equation as 

the absolute relative approximate error is greater than 5%. 

Seven more iterations were conducted and these iterations are shown in Table 1. 

 

      Table 1   Root of 0)( xf  as function of number of iterations for bisection method. 

Iteration x  
ux  

mx  
a % )( mxf  

1 0.00000 0.11 0.055 ----------   510655.6   

2 0.055 0.11 0.0825 33.33 410622.1   

3 0.055 0.0825 0.06875 20.00 510563.5   

4 0.055 0.06875 0.06188 11.11   610484.4   

5 0.06188 0.06875 0.06531 5.263 510593.2   

6 0.06188 0.06531 0.06359 2.702 5100804.1   

7 0.06188 0.06359 0.06273 1.370 610176.3   

8 0.06188 0.06273 0.0623 0.6897   710497.6   

9 0.0623 0.06273 0.06252 0.3436 610265.1   

10 0.0623 0.06252 0.06241 0.1721 7100768.3   

 

At the end of 10th iteration, 

%1721.0a  

Hence the number of significant digits at least correct is given by the largest value of m  for 

which 
m

a

 2105.0  

m 2105.01721.0  
m 2103442.0  

m 2)3442.0log(  

463.2)3442.0log(2 m  

So 

2m  

The number of significant digits at least correct in the estimated root of 06241.0  at the end of 

the 
th10  iteration is 2. 

 

Advantages of bisection method 

a) The bisection method is always convergent.  Since the method brackets the root, 

the method is guaranteed to converge. 

b) As iterations are conducted, the interval gets halved.   So one can guarantee the 

error in the solution of the equation. 
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Drawbacks of bisection method 

a) The convergence of the bisection method is slow as it is simply based on halving 

the interval.   

b) If one of the initial guesses is closer to the root, it will take larger number of 

iterations to reach the root. 

c) If a function )(xf  is such that it just touches the x -axis (Figure 6) such as 

 0)( 2  xxf  

      it will be unable to find the lower guess, x , and upper guess, ux , such that 

 0)()( uxfxf   

d) For functions )(xf  where there is a singularity 1  and it reverses sign at the 

singularity, the bisection method may converge on the singularity (Figure 7).  An 

example includes 

x
xf

1
)(   

                 where 2x , 3ux  are valid initial guesses which satisfy 

0)()( uxfxf   

However, the function is not continuous and the theorem that a root exists is also 

not applicable. 

 

  
          Figure 6   The equation 0)( 2  xxf  has a single root at 0x  that cannot be bracketed. 

 

 

 

 

 

 

 

 
1 A singularity in a function is defined as a point where the function becomes infinite.  For example, for a function 

such as x/1 , the point of singularity is 0x  as it becomes infinite. 

f (x) 

x 
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                  Figure 7   The equation   0
1


x
xf  has no root but changes sign. 
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False-Position Method of Solving a Nonlinear 
Equation 
 

 

Introduction 

In the previous lecture, the bisection method was described as one of the simple bracketing 

methods of solving a nonlinear equation of the general form 

0)( xf                                                                                                                       (1) 

 Uxf

Ux
rx

 Lxf

Lx

O

 xf

x

Exact root

 
Figure 1 False-Position Method 

 

The above nonlinear equation can be stated as finding the value of x such that Equation (1) is 

satisfied.  

In the bisection method, we identify proper values of 
Lx  (lower bound value) and Ux  (upper 

bound value) for the current bracket, such that 

  0)()( UL xfxf .                                                                                                     (2) 

The next predicted/improved root rx  can be computed as the midpoint between Lx  and Ux  

as 

2

UL

r

xx
x


                                                                                                               (3) 

The new upper and lower bounds are then established, and the procedure is repeated until the 

convergence is achieved (such that the new lower and upper bounds are sufficiently close to 

each other). 



 

 

 

2 

 

However, in the example shown in Figure 1, the bisection method may not be efficient 

because it does not take into consideration that )( Lxf  is much closer to the zero of the 

function )(xf  as compared to )( Uxf . In other words, the next predicted root 
rx  would be 

closer to 
Lx  (in the example as shown in Figure 1), than the mid-point between 

Lx  and Ux  .  

The false-position method takes advantage of this observation mathematically by drawing a 

secant from the function value at 
Lx  to the function value at Ux , and estimates the root as 

where it crosses the x-axis. 

 

False-Position Method 

Based on two similar triangles, shown in Figure 1, one gets 

Ur

U

Lr

L

xx

xf

xx

xf








 )(0)(0
                                                                                               (4) 

From Equation (4), one obtains 

       LUrULr xfxxxfxx   

        ULrULLU xfxfxxfxxfx   

The above equation can be solved to obtain the next predicted root mx  as 

   
   UL

ULLU

r
xfxf

xfxxfx
x




                                                      (5)                                                              

The above equation, through simple algebraic manipulations, can also be expressed as 

 

   














UL

UL

U

Ur

xx

xfxf

xf
xx                               (6) 

or 

 

   














LU

LU

L
Lr

xx

xfxf

xf
xx                     (7) 

Observe the resemblance of Equations (6) and (7) to the secant method. 

 

False-Position Algorithm 

The steps to apply the false-position method to find the root of the equation   0xf are as 

follows. 

1. Choose 
Lx and Ux  as two guesses for the root such that     0UL xfxf , or in other words, 

 xf  changes sign between 
Lx  and Ux . 

2. Estimate the root, rx  of the equation   0xf as  

   
   UL

ULLU

r
xfxf

xfxxfx
x




  

3. Now check the following 

If     0rL xfxf , then the root lies between Lx  and rx ; then LL xx   and rU xx  . 
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If     0rL xfxf , then the root lies between 
rx  and Ux ; then 

rL xx   and UU xx  . 

If     0rL xfxf , then the root is
rx .  Stop the algorithm. 

4. Find the new estimate of the root 

 

Find the absolute relative approximate error as 

100



new

r

old

r

new

r
a

x

xx
 

where 
new

rx = estimated root from present iteration 
old

rx = estimated root from previous iteration 

5. Compare the absolute relative approximate error a with the pre-specified relative error 

tolerance s . If sa  , then go to step 3, else stop the algorithm. Note one should also 

check whether the number of iterations is more than the maximum number of iterations 

allowed. If so, one needs to terminate the algorithm and notify the user about it. 

Note that the false-position and bisection algorithms are quite similar. The only difference is 

the formula used to calculate the new estimate of the root
rx  as shown in steps #2 and #4! 

 

Example 1 

You are working for “DOWN THE TOILET COMPANY” that makes floats for ABC 

commodes. The floating ball has a specific gravity of 0.6 and has a radius of 5.5cm. You are 

asked to find the depth to which the ball is submerged when floating in water.  The equation 

that gives the depth x  to which the ball is submerged under water is given by 

010993.3165.0 423  xx  

Use the false-position method of finding roots of equations to find the depth x  to which the 

ball is submerged under water. Conduct three iterations to estimate the root of the above 

equation. Find the absolute relative approximate error at the end of each iteration, and the 

number of significant digits at least correct at the end of third iteration. 

 
Figure 2   Floating ball problem. 

 

 

   
   UL

ULLU
r

xfxf

xfxxfx
x
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Solution 

From the physics of the problem, the ball would be submerged between 0x  and Rx 2 ,  

where  

           ball,  theof radiusR  

that is 

           Rx 20   

           )055.0(20  x  

           11.00  x  

Let us assume 

11.0,0  UL xx  

Check if the function changes sign between 
Lx  and Ux  

       

        4423

4423

10662.210993.311.0165.011.011.0

10993.310993.30165.000









fxf

fxf

U

L
 

Hence 

           010662.210993.311.00 44  ffxfxf UL
 

Therefore, there is at least one root between 
Lx  and Ux , that is between 0 and 0.11. 

Iteration 1 

The estimate of the root is 

   
   

 
 

0660.0

10662.210993.3

10662.2010993.311.0
44

44

















UL

ULLU

r
xfxf

xfxxfx
x

 

   

     
5

423

101944.3

10993.30660.0165.00660.0

0660.0









 fxf r

 

           00660.00  ffxfxf rL  

Hence, the root is bracketed between 
Lx  and

rx , that is, between 0 and 0.0660. So, the lower 

and upper limits of the new bracket are 0660.0,0  UL xx , respectively. 

 

Iteration 2 

The estimate of the root is 

   
   

 
 

0611.0

101944.310993.3

101944.3010993.30660.0
54

54

















UL

ULLU

r
xfxf

xfxxfx
x

 

The absolute relative approximate error for this iteration is  
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%8100
0611.0

0660.00611.0



a  

 

   

     
5

423

101320.1

10993.30611.0165.00611.0

0611.0









 fxf r

 

           00611.00  ffxfxf rL
 

Hence, the lower and upper limits of the new bracket are 0660.0,0611.0  UL xx , 

respectively. 

 

Iteration 3 

The estimate of the root is 

   
   

 
 

0624.0

101944.310132.1

101944.30611.010132.10660.0
55

55

















UL

ULLU

r
xfxf

xfxxfx
x

 

The absolute relative approximate error for this iteration is  

%05.2100
0624.0

0611.00624.0



a  

  7101313.1 rxf  

           00624.00611.0  ffxfxf rL  

Hence, the lower and upper limits of the new bracket are 0624.0,0611.0  UL xx  

All iterations results are summarized in Table 1.  To find how many significant digits are at 

least correct in the last iterative value  

m

m

a









2

2

105.005.2

105.0
 

387.1m  

The number of significant digits at least correct in the estimated root of 0.0624 at the end of 

3rd iteration is 1. 

 

Table 1 Root of   010993.3165.0 423  xxxf for false-position method. 

Iteration 
Lx  Ux

 rx  %a  
 mxf

 
1 0.0000 0.1100 0.0660 ---- 5101944.3   

2 0.0000 0.0660 0.0611 8.00 5101320.1   

3 0.0611 0.0660 0.0624 2.05 7101313.1   
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Example 2 

Find the root of       024
2

 xxxf , using the initial guesses of 5.2Lx  and 

,0.1Ux and a pre-specified tolerance of %1.0s . 

Solution 

The individual iterations are not shown for this example, but the results are summarized in 

Table 2.  It takes five iterations to meet the pre-specified tolerance. 

Table 2 Root of       024
2

 xxxf for false-position method. 

Iteration 
Lx  Ux   Lxf   Uxf  rx  %a   mxf  

1 -2.5 -1 -21.13 25.00 -1.813 N/A 6.319 

2 -2.5 -1.813 -21.13 6.319 -1.971 8.024 1.028 

3 -2.5 -1.971 -21.13 1.028 -1.996 1.229 0.1542 

4 -2.5 -1.996 -21.13 0.1542 -1.999 0.1828 0.02286 

5 -2.5 -1.999 -21.13 0.02286 -2.000 0.02706 0.003383 

To find how many significant digits are at least correct in the last iterative answer, 

m

m

a









2

2

105.002706.0

105.0
 

2666.3m  

Hence, at least 3 significant digits can be trusted to be accurate at the end of the fifth 

iteration. 
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Secant Method of Solving Nonlinear Equations 
 

 

 

What is the secant method and why would I want to use it instead of the Newton-

Raphson method? 

The Newton-Raphson method of solving a nonlinear equation 0)( xf  is given by the 

iterative formula 

)(

)(
1

i

i

ii
xf

xf
 = xx


          (1) 

One of the drawbacks of the Newton-Raphson method is that you have to evaluate the 

derivative of the function.  With availability of symbolic manipulators such as Maple, 

MathCAD, MATHEMATICA and MATLAB, this process has become more convenient.  

However, it still can be a laborious process, and even intractable if the function is derived as 

part of a numerical scheme.  To overcome these drawbacks, the derivative of the function, 

)(xf  is approximated as 

1

1)()(
)(










ii

ii

i
xx

xfxf
xf         (2) 

Substituting Equation (2) in Equation (1) gives 

)()(

))((

1

1

1











ii

iii

ii
xfxf

xxxf
xx         (3) 

The above equation is called the secant method.  This method now requires two initial 

guesses, but unlike the bisection method, the two initial guesses do not need to bracket the 

root of the equation.  The secant method is an open method and may or may not converge.  

However, when secant method converges, it will typically converge faster than the bisection 

method.  However, since the derivative is approximated as given by Equation (2), it typically 

converges slower than the Newton-Raphson method. 

 

The secant method can also be derived from geometry, as shown in Figure 1.  Taking two 

initial guesses, 1ix  and ix , one draws a straight line between )( ixf  and )( 1ixf  passing 

through the x -axis at 1ix .  ABE and DCE are similar triangles.  

Hence 

DE

DC

AE

AB
  

11

1

1

)()(





 


 ii

i

ii

i

xx

xf

xx

xf
 

On rearranging, the secant method is given as 



2 

 

)()(

))((

1

1

1











ii

iii

ii
xfxf

xxxf
xx  

                      
                         Figure 1  Geometrical representation of the secant method. 

 

 

Example 1 

You are working for ‘DOWN THE TOILET COMPANY’ that makes floats (Figure 2) for 

ABC commodes.  The floating ball has a specific gravity of 0.6 and a radius of 5.5 cm.  You 

are asked to find the depth to which the ball is submerged when floating in water. 

The equation that gives the depth x  to which the ball is submerged under water is given by 

010993.3165.0 423  xx  

Use the secant method of finding roots of equations to find the depth x  to which the ball is 

submerged under water. Conduct three iterations to estimate the root of the above equation.  

Find the absolute relative approximate error and the number of significant digits at least 

correct at the end of each iteration. 

 

f (x) 

f (xi) 

f (xi–1) 

    xi+1     xi–1     xi 
    x 

B 

  C 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E 
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Solution 

   423 10993.31650  x.xxf  

Let us assume the initial guesses of the root of   0xf  as 0201 .x 
 and 0500 .x  . 

                  
                 Figure 2   Floating ball problem. 

Iteration 1 

The estimate of the root is 

 1x  
  
   10

100
0










xfxf

xxxf
x  

     
   

   42

1

3

1

42

0

3

0

10

42

0

3

0
0

10993.3165.010993.3165.0

10993.3165.0
















xxxx

xxxx
x  

                
    

     423423

423

10993.302.0165.002.010993.305.0165.005.0

02.005.010993.305.0165.005.0
05.0








   

                06461.0  

 

The absolute relative approximate error a  at the end of Iteration 1 is 

100
1

01 



x

xx
a  

100
06461.0

05.006461.0
      


  

       %62.22  

The number of significant digits at least correct is 0, as you need an absolute relative 

approximate error of 5% or less for one significant digit to be correct in your result. 

 

Iteration 2 

  
   01

011

12
xfxf

xxxf
xx




  

     
   

   42

0

3

0

42

1

3

1

01

42

1

3

1
1

10993.3165010993.31650

10993.31650
 










x.xx.x

xxx.x
x  
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     423423

423

10993.305.0165.005.010993.306461.0165.006461.0

05.006461.010993.306461.0165.006461.0
06461.0










 

06241.0  

The absolute relative approximate error a  at the end of Iteration 2 is 

100
2

12 



x

xx
a  

      100
06241.0

06461.006241.0



  

      %525.3   

The number of significant digits at least correct is 1, as you need an absolute relative 

approximate error of 5% or less. 

 

Iteration 3 

     
  
   12

122
23

xfxf

xxxf
xx




  

         
   

   42

1

3

1

42

2

3

2

12

42

2

3

2
2

10993.3165.010993.3165.0

10993.3165.0










xxxx

xxxx
x  

    

     423423

423

10993.306461.0165.006461.010993.306241.0165.006241.0

06461.006241.010993.306241.0165.006241.0
06241.0










         06238.0  

The absolute relative approximate error a  at the end of Iteration 3 is 

100
3

23 



x

xx
a  

      100
06238.0

06241.006238.0



  

                  %0595.0  

The number of significant digits at least correct is 2, as you need an absolute relative 

approximate error of 0.5% or less.  Table 1 shows the secant method calculations for the 

results from the above problem. 

 

              Table 1   Secant method results as a function of iterations. 

Iteration 

Number, i 1ix
 ix

 1ix
 

%a  
 1ixf

 

1 

2 

3 

4 

0.02 

0.05 

0.06461 

0.06241 

0.05 

0.06461 

0.06241 

0.06238 

0.06461 

0.06241 

0.06238 

0.06238 

   22.62 

   3.525 

   0.0595 
41064.3   

5109812.1   
7102852.3   

   
9100252.2   

13108576.1   
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Newton-Raphson Method of Solving a Nonlinear 
Equation 
 

 

 

Introduction 

Methods such as the bisection method and the false position method of finding roots of a 

nonlinear equation 0)( xf  require bracketing of the root by two guesses.  Such methods 

are called bracketing methods.  These methods are always convergent since they are based on 

reducing the interval between the two guesses so as to zero in on the root of the equation. 

In the Newton-Raphson method, the root is not bracketed.  In fact, only one initial 

guess of the root is needed to get the iterative process started to find the root of an equation.  

The method hence falls in the category of open methods.  Convergence in open methods is 

not guaranteed but if the method does converge, it does so much faster than the bracketing 

methods. 

 

Derivation 

The Newton-Raphson method is based on the principle that if the initial guess of the root of 

0)( xf  is at ix , then if one draws the tangent to the curve at )( ixf , the point 1ix  where 

the tangent crosses the x -axis is an improved estimate of the root (Figure 1). 

Using the definition of the slope of a function, at ixx   

  θ = xf i tan  

 

1

0





ii

i

xx

xf
 = , 

which gives 

 
 i

i
ii

xf

xf
 = xx


1        (1) 

Equation (1) is called the Newton-Raphson formula for solving nonlinear equations of the 

form   0xf .  So starting with an initial guess, ix , one can find the next guess, 1ix , by 

using Equation (1).  One can repeat this process until one finds the root within a desirable 

tolerance. 

 

Algorithm 

The steps of the Newton-Raphson method to find the root of an equation   0xf   are 

1. Evaluate  xf   symbolically 

2. Use an initial guess of the root, ix , to estimate the new value of the root, 1ix , as 



2 

 

             
 
 i

i
ii

xf

xf
 = xx


1  

3. Find the absolute relative approximate error a  as 

            010
1

1 







i

ii

a
x

 xx
 =  

4. Compare the absolute relative approximate error with the pre-specified relative 

error tolerance, s .  If a > s , then go to Step 2, else stop the algorithm.  Also, 

check if the number of iterations has exceeded the maximum number of iterations 

allowed.  If so, one needs to terminate the algorithm and notify the user. 

 

                        
                           Figure 1  Geometrical illustration of the Newton-Raphson method. 

 

Example 1 

You are working for ‘DOWN THE TOILET COMPANY’ that makes floats for ABC 

commodes.  The floating ball has a specific gravity of 0.6 and has a radius of 5.5 cm.  You 

are asked to find the depth to which the ball is submerged when floating in water. 

 

f (x) 

f (xi) 

f (xi+1) 

    xi+2     xi+1     xi 
    x 

    θ 

[xi,  f (xi)] 
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                                          Figure 2   Floating ball problem. 

 

The equation that gives the depth x  in meters to which the ball is submerged under water is 

given by 

010993.3165.0 423  xx  

Use the Newton-Raphson method of finding roots of equations to find  

a) the depth x  to which the ball is submerged under water.  Conduct three iterations 

to estimate the root of the above equation.   

b) the absolute relative approximate error at the end of each iteration, and  

c) the number of significant digits at least correct at the end of each iteration. 

Solution 

  423 10993.31650  x.xxf  

  x.xxf 3303 2   

Let us assume the initial guess of the root of   0xf  is ..x m 0500    This is a reasonable 

guess (discuss why 0x  and m 11.0x  are not good choices) as the extreme values of the 

depth x  would be 0 and the diameter (0.11 m) of the ball.   

Iteration 1  

The estimate of the root is 

 
 0

0
01

xf

xf
xx


  

    
   

   0503300503

10993.30501650050
050

2

423

...

...
.








 

    
3

4

109

10118.1
050








 .  

     01242.0050  .  

                062420.   

The absolute relative approximate error a  at the end of Iteration 1 is 

100
1

01 



x

xx
a  



4 

 

      

19.90% 

100
062420

050062420







.

..

 

        

The number of significant digits at least correct is 0, as you need an absolute relative 

approximate error of 5% or less for at least one significant digit to be correct in your result. 

Iteration 2 

The estimate of the root is 

 
 1

1
12

xf

xf
xx


  

     
   

   0624203300624203

10993.30624201650062420
062420

2

423

...

...
.








 

     
3

7

1090973.8

10977813
062420










.
.  

      5104646.4062420  .  

     062380.  

The absolute relative approximate error a  at the end of Iteration 2 is 

100
2

12 



x

xx
a  

      100
062380

062420062380





.

..
 

       %07160.  

The maximum value of m  for which m

a

 2105.0  is 2.844.  Hence, the number of 

significant digits at least correct in the answer is 2. 

Iteration 3 

The estimate of the root is 

 
 2

2
23

xf

xf
xx


  

    
   

   0623803300623803

10993.30623801650062380
062380

2

423

...

...
.








 

    
3

11

1091171.8

1044.4
062380








 .  

      9109822.4062380  .  

     062380.  

The absolute relative approximate error a  at the end of Iteration 3 is 

100
062380

062380062380





.

..
a  

       0  
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The number of significant digits at least correct is 4, as only 4 significant digits are carried 

through in all the calculations. 

 

Drawbacks of the Newton-Raphson Method 

1. Divergence at inflection points 

 If the selection of the initial guess or an iterated value of the root turns out to be close to the 

inflection point (see the definition in the appendix of this chapter) of the function  xf  in the 

equation   0xf , Newton-Raphson method may start diverging away from the root.  It may 

then start converging back to the root.  For example, to find the root of the equation 

    0512.01
3

 xxf  

the Newton-Raphson method reduces to 

2

33

1
)1(3

512.0)1(






i

i
ii

x

x
 = xx  

Starting with an initial guess of 0.50 x , Table 1 shows the iterated values of the root of the 

equation.  As you can observe, the root starts to diverge at Iteration 6 because the previous 

estimate of 0.92589 is close to the inflection point of 1x  (the value of  xf '  is zero at the 

inflection point). Eventually, after 12 more iterations the root converges to the exact value of 

2.0x . 

Table 1   Divergence near inflection point. 

Iteration 

Number ix  

0 5.0000 

1 3.6560 

2 2.7465 

3 2.1084 

4 1.6000 

5 0.92589 

6 –30.119 

7 –19.746 

8 –12.831 

9 –8.2217 

10 –5.1498 

11 –3.1044 

12 –1.7464 

13 –0.85356 

14 –0.28538 

15 0.039784 

16 0.17475 

17 0.19924 

18 0.2 
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Figure 3   Divergence at inflection point for     01
3
 xxf . 

 

2. Division by zero  

For the equation  

  01042030 623  .x.xxf  

the Newton-Raphson method reduces to  

ii

ii
ii

xx

.x.x
 = xx

06.03

1042030
2

623

1







  

For 00 x  or 02.00 x , division by zero occurs (Figure 4).  For an initial guess close to 

0.02 such as 01999.00 x , one may avoid division by zero, but then the denominator in the 

formula is a small number.  For this case, as given in Table 2, even after 9 iterations, the 

Newton-Raphson method does not converge. 

 

Table 2   Division by near zero in Newton-Raphson method. 

Iteration  

Number ix  )( ixf  %a  

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

 0.019990 

–2.6480 

–1.7620 

–1.1714 

–0.77765 

–0.51518 

–0.34025 

–0.22369 

–0.14608 

–0.094490 

-6101.60000  

18.778 

 –5.5638 

 –1.6485 

 –0.48842 

 –0.14470 

 –0.042862 

 –0.012692 

 –0.0037553 

 –0.0011091 

 
100.75 

 50.282 

 50.422 

 50.632 

 50.946 

 51.413 

 52.107 

 53.127 

 54.602 
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-1.00E-05

-7.50E-06

-5.00E-06

-2.50E-06

0.00E+00

2.50E-06

5.00E-06

7.50E-06

1.00E-05

-0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04

x

f(x)

0.02

 
         Figure 4   Pitfall of division by zero or a near zero number. 

 

3. Oscillations near local maximum and minimum  

Results obtained from the Newton-Raphson method may oscillate about the local maximum 

or minimum without converging on a root but converging on the local maximum or 

minimum. Eventually, it may lead to division by a number close to zero and may diverge. 

For example, for 

  022  xxf  

 the equation has no real roots (Figure 5 and Table 3). 

-1

0

1

2

3

4

5

6

-2 -1 0 1 2 3

f(x)

x

 3

 4

 2

 1

 -1.75  -0.3040 0.5 3.142

 
        Figure 5   Oscillations around local minima for   22  xxf . 
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Table 3   Oscillations near local maxima and minima in Newton-Raphson method. 

Iteration  

Number ix  )( ixf  %a  

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

–1.0000 

  0.5 

–1.75 

–0.30357 

 3.1423 

 1.2529 

–0.17166 

 5.7395 

 2.6955  

 0.97678 

3.00 

2.25 

5.063  

2.092 

11.874 

3.570 

2.029 

34.942 

9.266 

2.954  

300.00 

128.571 

 476.47 

109.66 

150.80 

829.88 

102.99 

112.93 

175.96 

 

4. Root jumping  

In some case where the function )(xf  is oscillating and has a number of roots, one may 

choose an initial guess close to a root.  However, the guesses may jump and converge to 

some other root.  For example for solving the equation 0sin x  if you choose 

 539822.74.20  x  as an initial guess, it converges to the root of 0x  as shown in 

Table 4 and Figure 6.  However, one may have chosen this as an initial guess to converge to 

283185362 .x   . 

 

                     Table 4   Root jumping in Newton-Raphson method. 

Iteration  

Number ix  )( ixf  %a  

0 

1 

2 

3 

4 

5 

 7.539822 

 4.462 

 0.5499 

–0.06307 
410376.8   

131095861.1   

 0.951 

–0.969 

  0.5226 

–0.06303 
510375.8   

131095861.1   

 
68.973 

711.44 

971.91 
41054.7   
101028.4   
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-1.5

-1

-0.5

0

0.5

1

1.5

-2 0 2 4 6 8 10

x

f(x)

 -0.06307 0.5499 4.461  7.539822

 
Figure 6   Root jumping from intended location of root for   0sin  xxf . 

 

Appendix A. What is an inflection point? 

For a function  xf , the point where the concavity changes from up-to-down or 

down-to-up is called its inflection point.  For example, for the function    31 xxf , the 

concavity changes at 1x  (see Figure 3), and hence (1,0) is an inflection point.    

An inflection points MAY exist at a point where 0)(  xf  and where )('' xf  does 

not exist.  The reason we say that it MAY exist is because if 0)(  xf , it only makes it a 

possible inflection point.  For example, for 16)( 4  xxf , 0)0( f , but the concavity does 

not change at 0x . Hence the point (0, –16) is not an inflection point of 16)( 4  xxf . 

For    31 xxf , )(xf  changes sign at 1x  ( 0)(  xf  for 1x , and 0)(  xf  

for 1x ), and thus brings up the Inflection Point Theorem for a function )(xf  that states the 

following. 

“If )(' cf  exists and )(cf   changes sign at cx  , then the point ))(,( cfc  is an 

inflection point of the graph of f .” 

 

Appendix B. Derivation of Newton-Raphson method from Taylor series 

Newton-Raphson method can also be derived from Taylor series.  For a general function 

 xf , the Taylor series is 

      iiiii xxxfxfxf   11 + 
 

  

2

1
!2

ii
i xx

xf"
  

As an approximation, taking only the first two terms of the right hand side, 

      iiiii xxxfxfxf   11  

and we are seeking a point where   ,xf 0  that is, if we assume 

  ,xf i 01   
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    iiii xxxfxf  10  

which gives 

 
 i

i
ii

xf'

xf
xx 1  

This is the same Newton-Raphson method formula series as derived previously using the 

geometric method. 
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Trapezoidal Rule of Integration 
 

 

 

 

 

What is integration? 

Integration is the process of measuring the area under a function plotted on a graph.  Why 

would we want to integrate a function?  Among the most common examples are finding the 

velocity of a body from an acceleration function, and displacement of a body from a velocity 

function.  Throughout many engineering fields, there are (what sometimes seems like) 

countless applications for integral calculus.  You can read about some of these applications in 

Chapters 07.00A-07.00G.   

Sometimes, the evaluation of expressions involving these integrals can become daunting, if 

not indeterminate.  For this reason, a wide variety of numerical methods has been developed 

to simplify the integral.   

Here, we will discuss the trapezoidal rule of approximating integrals of the form 

 
b

a

dxxfI  

where  

  )(xf  is called the integrand, 

  a  lower limit of integration 

  b  upper limit of integration 

 

What is the trapezoidal rule? 

The trapezoidal rule is based on the Newton-Cotes formula that if one approximates the 

integrand by an 
thn  order polynomial, then the integral of the function is approximated by 

the integral of that thn  order polynomial.  Integrating polynomials is simple and is based on 

the calculus formula. 
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Figure 1 Integration of a function 
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1

11

















 n
n

ab
dxx

nnb

a

n                                                                           (1) 

So if we want to approximate the integral 


b

a

dxxfI )(                                                                                                                 (2) 

to find the value of the above integral, one assumes 

)()( xfxf n                                                                                                               (3) 

where 
n

n

n

nn xaxaxaaxf  



1

110 ...)( .                                                              (4) 

where )(xf n  is a 
thn  order polynomial.  The trapezoidal rule assumes 1n , that is, 

approximating the integral by a linear polynomial (straight line), 

 

b

a

b

a

dxxfdxxf )()( 1

 
Derivation of the Trapezoidal Rule 

Method 1: Derived from Calculus 

 

b

a

b

a

dxxfdxxf )()( 1  

      

b

a

dxxaa )( 10  

                           






 


2
)(

22

10

ab
aaba                                                                  (5) 

But what is 0a  and 
1a ?  Now if one chooses, ))(,( afa  and ))(,( bfb  as the two points to 

approximate )(xf  by a straight line from a  to b , 
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aaaafaf 101 )()(                                                                                        (6) 

baabfbf 101 )()(                                                                                        (7) 

 

Solving the above two equations for 
1a  and 0a , 

ab

afbf
a






)()(
1  

ab

abfbaf
a






)()(
0                                                                                      (8a) 

Hence from Equation (5), 

2

)()(
)(

)()(
)(

22 ab

ab

afbf
ab

ab

abfbaf
dxxf

b

a











               (8b) 

                           






 


2

)()(
)(

bfaf
ab                                                                           (9)  

 

Method 2: Also Derived from Calculus 

)(1 xf  can also be approximated by using Newton’s divided difference polynomial as 

)(
)()(

)()(1 ax
ab

afbf
afxf 




                                                                         (10) 

Hence 

 

b

a

b

a

dxxfdxxf )()( 1  
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dxax
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2

)()(
)(

bfaf
ab                                                                         (11) 

This gives the same result as Equation (10) because they are just different forms of writing 

the same polynomial. 

 

Method 3: Derived from Geometry 

The trapezoidal rule can also be derived from geometry. Look at Figure 2.  The area under 

the curve )(1 xf  is the area of a trapezoid.  The integral 

trapezoidofArea)( 
b

a

dxxf  

 
2

1
 (Sum of length of parallel sides)(Perpendicular distance between parallel sides) 

   )()()(
2

1
abafbf   

 






 


2

)()(
)(

bfaf
ab                                                                                     (12) 

 

 

Figure 2 Geometric representation of trapezoidal rule. 

 

Method 4: Derived from Method of Coefficients 

The trapezoidal rule can also be derived by the method of coefficients.  The formula 

)(
2

)(
2

)( bf
ab

af
ab

dxxf

b

a





                                                                           (13) 

                           



2

1

)(
i

ii xfc  

where 

2
1

ab
c




 

2
2

ab
c




 
ax 1   
bx 2   
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Figure 3 Area by method of coefficients. 

 

The interpretation is that )(xf  is evaluated at points a  and b , and each function evaluation 

is given a weight of 
2

ab 
.  Geometrically, Equation (12) is looked at as the area of a 

trapezoid, while Equation (13) is viewed as the sum of the area of two rectangles, as shown 

in Figure 3.  How can one derive the trapezoidal rule by the method of coefficients?   

 

Assume 

)()()( 21 bfcafcdxxf

b

a

                                                                                     (14) 

Let the right hand side be an exact expression for integrals of 
b

a

dx1  and 
b

a

xdx , that is, the 

formula will then also be exact for linear combinations of 1)( xf  and xxf )( , that is, for 

)()1()( 10 xaaxf  . 

211 ccabdx

b

a

                                                                                      (15) 

bcac
ab

xdx

b

a

21

22

2



                                                                                     (16) 

Solving the above two equations gives 

2
1

ab
c


  

2
2

ab
c


                                                                                                             (17) 

Hence 

)(
2

)(
2

)( bf
ab

af
ab

dxxf

b

a





                                                                         (18) 
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Method 5: Another approach on the Method of Coefficients 

The trapezoidal rule can also be derived by the method of coefficients by another approach 

)(
2

)(
2

)( bf
ab

af
ab

dxxf

b

a





  

Assume 

)()()( 21 bfcafcdxxf

b

a

                                                                                     (19) 

Let the right hand side be exact for integrals of the form 

  

b

a

dxxaa 10  

So 

 
b

a

b

a

x
axadxxaa 








 2

2

1010  

               






 


2

22

10

ab
aaba                                                             (20) 

But we want 

  )()( 2110 bfcafcdxxaa

b

a

                                                                         (21) 

to give the same result as Equation (20) for xaaxf 10)(  . 

     baacaaacdxxaa

b

a

10210110   

                bcacacca 211210                                                              (22) 

Hence from Equations (20) and (22), 

     bcacacca
ab

aaba 211210

22

10
2








 
  

Since 0a  and 
1a  are arbitrary for a general straight line 

abcc  21  

2

22

21

ab
bcac


                                                                                                 (23) 

Again, solving the above two equations (23) gives 

2
1

ab
c


  

2
2

ab
c


                                                                                                             (24) 

Therefore 

)()()( 21 bfcafcdxxf

b

a
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                           )(
2

)(
2

bf
ab

af
ab 




                                                                           (25) 

 

Example 1 

The vertical distance covered by a rocket from 8t  to 30t  seconds is given by 

 




















30

8

8.9
2100140000

140000
ln2000 dtt

t
x  

a) Use the single segment trapezoidal rule to find the distance covered for 8t  to 

30t seconds. 

b) Find the true error, tE  for part (a). 

c) Find the absolute relative true error for part (a). 

Solution 

a) 






 


2

)()(
)(

bfaf
abI , where 

8a   

30b   

t
t

tf 8.9
2100140000

140000
ln2000)( 










  

)8(8.9
)8(2100140000

140000
ln2000)8( 










f  

                     27.177  m/s 

)30(8.9
)30(2100140000

140000
ln2000)30( 










f  

                      67.901  m/s 








 


2

67.90127.177
)830(I  

               11868  m 

 

b) The exact value of the above integral is 

  




















30

8

8.9
2100140000

140000
ln2000 dtt

t
x  

    11061  m 

so the true error is 

tE  True Value – Approximate Value 

      1186811061  

      807  m 

c) The absolute relative true error, t , would then be 
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100
Value True

Error True
t   

       100
11061

1186811061



  

       %2958.7  

 

Multiple-Segment Trapezoidal Rule 

In Example 1, the true error using a single segment trapezoidal rule was large.  We can 

divide the interval ]30,8[  into ]19,8[  and ]30,19[  intervals and apply the trapezoidal rule over 

each segment. 

t
t

tf 8.9
2100140000

140000
ln2000)( 










  

 

30

19

19

8

30

8

)()()( dttfdttfdttf  

              






 








 


2

)30()19(
)1930(

2

)19()8(
)819(

ffff
 

                 27.177)8( f  m/s 

   75.484)19(8.9
)19(2100140000

140000
ln2000)19( 










f m/s 

    67.901)30( f  m/s 

Hence 








 








 
 2

67.90175.484
)1930(

2

75.48427.177
)819()(

30

8

dttf  

    11266  m 

The true error, tE  is 

1126611061tE  

       205 m 

The true error now is reduced from 807m to 205m.  Extending this procedure to dividing 

],[ ba  into n  equal segments and applying the trapezoidal rule over each segment, the sum of 

the results obtained for each segment is the approximate value of the integral. 

Divide )( ab   into n  equal segments as shown in Figure 4.  Then the width of each segment 

is 

n

ab
h


                                                                                                             (26) 

The integral I  can be broken into h  integrals as 


b

a

dxxfI )(   
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)()(...)()(                                     (27) 

 

 

Figure 4  Multiple ( 4n ) segment trapezoidal rule 

 

Applying trapezoidal rule Equation (27) on each segment gives 
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Example 2 

The vertical distance covered by a rocket from 8t  to 30t  seconds is given by 

 




















30

8

8.9
2100140000

140000
ln2000 dtt

t
x  

a) Use the two-segment trapezoidal rule to find the distance covered from 8t  to 

30t  seconds. 

b) Find the true error, tE  for part (a). 

c) Find the absolute relative true error for part (a). 

Solution 

a) The solution using 2-segment Trapezoidal rule is 






















 




)()(2)(
2

1

1

bfihafaf
n

ab
I

n

i

 

2n  

8a   

30b  

n

ab
h


  

               
2

830 
  

               11   

       




















 




)30()118(2)8(
)2(2

830 12

1

fiffI
i

 

                 )30()19(2)8(
4

22
fff   

                 67.901)75.484(227.177
4

22
  

                11266  m 

 

b) The exact value of the above integral is 

 




















30

8

8.9
2100140000

140000
ln2000 dtt

t
x  

       11061  m 

so the true error is 

 Value TruetE Approximate Value 

       1126611061  

      m205  

 

c) The absolute relative true error, t , would then be 
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100
Value True

Error True
t   

       100
11061

1126611061



  

       %8537.1  

 

         Table 1 Values obtained using multiple-segment trapezoidal rule for 

 




















30

8

8.9
2100140000

140000
ln2000 dtt

t
x  

  

n  
Approximate 

Value tE  %t  %a  

1 11868 -807 7.296 --- 

2 11266 -205 1.853 5.343 

3 11153 -91.4 0.8265 1.019 

4 11113 -51.5 0.4655 0.3594 

5 11094 -33.0 0.2981 0.1669 

6 11084 -22.9 0.2070 0.09082 

7 11078 -16.8 0.1521 0.05482 

8 11074 -12.9 0.1165 0.03560 

 

Example 3 

Use the multiple-segment trapezoidal rule to find the area under the curve 

xe

x
xf




1

300
)(  

from 0x  to 10x . 

Solution 

Using two segments, we get 

5
2

010



h  

0
1

)0(300
)0(

0





e
f  

039.10
1

)5(300
)5(

5





e
f  

136.0
1

)10(300
)10(

10





e
f  






















 




)()(2)(
2

1

1

bfihafaf
n

ab
I

n

i

 

    




















 




)10()50(2)0(
)2(2

010 12

1

fff
i

 



 

 

 

12 

 

     )10()5(2)0(
4

10
fff   

      136.0)039.10(20
4

10
    537.50  

So what is the true value of this integral? 

59.246
1

300
10

0




dx
e

x
x

 

Making the absolute relative true error 

100
59.246

535.5059.246



t  

       %506.79  

Why is the true value so far away from the approximate values?  Just take a look at Figure 5.  

As you can see, the area under the “trapezoids” (yeah, they really look like triangles now) 

covers a small portion of the area under the curve.  As we add more segments, the 

approximated value quickly approaches the true value. 

 

Figure 5  2-segment trapezoidal rule approximation. 
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Table 2 Values obtained using multiple-segment trapezoidal rule for  

10

0
1

300
dx

e

x
x

. 

n  
Approximate  

Value tE  t  

1 0.681 245.91 99.724% 

2 50.535 196.05 79.505% 

4 170.61 75.978 30.812% 

8 227.04 19.546 7.927% 

16 241.70 4.887 1.982% 

32 245.37 1.222 0.495% 

64 246.28 0.305 0.124% 

 

Example 4 

Use multiple-segment trapezoidal rule to find 


2

0

1
dx

x
I  

Solution 

We cannot use the trapezoidal rule for this integral, as the value of the integrand at 0x  is 

infinite.  However, it is known that a discontinuity in a curve will not change the area under 

it.  We can assume any value for the function at 0x .  The algorithm to define the function 

so that we can use the multiple-segment trapezoidal rule is given below. 

  

 Function )(xf  

 If 0x  Then 0f  

 If 0x  Then )5.0(^  xf  

 End Function 

 

Basically, we are just assigning the function a value of zero at 0x .  Everywhere else, the 

function is continuous.  This means the true value of our integral will be just that—true.  

Let’s see what happens using the multiple-segment trapezoidal rule. 

Using two segments, we get 

1
2

02
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0)0( f  

1
1

1
)1( f  
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70711.0
2

1
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)2()10(2)0(
)2(2

02 12

1

fff
i

 

      )2()1(2)0(
4

2
fff   

      70711.0)1(20
4

2
  

     3536.1  

So what is the true value of this integral? 

8284.2
1

2

0

 dx
x

 

Thus making the absolute relative true error 

100
8284.2

3536.18284.2



t  

       %145.52  

 Table 3 Values obtained using multiple-segment trapezoidal rule for 
2

0

1
dx

x
. 

n  
Approximate  

Value tE  t  

2 1.354 1.474 52.14% 

4 1.792 1.036 36.64% 

8 2.097 0.731 25.85% 

16 2.312 0.516 18.26% 

32 2.463 0.365 12.91% 

64 2.570 0.258 9.128% 

128 2.646 0.182 6.454% 

256 2.699 0.129 4.564% 

512 2.737 0.091 3.227% 

1024 2.764 0.064 2.282% 

2048 2.783 0.045 1.613% 

4096 2.796 0.032 1.141% 

 

Error in Multiple-segment Trapezoidal Rule 

The true error for a single segment Trapezoidal rule is given by 

baf
ab

Et 
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Where   is some point in  ba, . 
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What is the error then in the multiple-segment trapezoidal rule?  It will be simply the sum of 

the errors from each segment, where the error in each segment is that of the single segment 

trapezoidal rule.  The error in each segment is 
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Hence the total error in the multiple-segment trapezoidal rule is 
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In Table 4, the approximate value of the integral 
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is given as a function of the number of segments.  You can visualize that as the number of 

segments are doubled, the true error gets approximately quartered. 

 

Table 4 Values obtained using multiple-segment trapezoidal rule for 

 




















30

8

8.9
2100140000

140000
ln2000 dtt

t
x . 

 

n  
Approximate 

Value tE  %t  %a  

2 11266 -205 1.853 5.343 

4 11113 -52 0.4701 0.3594 

8 11074 -13 0.1175 0.03560 

16 11065 -4 0.03616 0.00401 

 

For example, for the 2-segment trapezoidal rule, the true error is -205, and a quarter of that 

error is -51.25.  That is close to the true error of -48 for the 4-segment trapezoidal rule.    

 

Can you answer the question why is the true error not exactly -51.25? How does this 

information help us in numerical integration?  You will find out that this forms the basis of 

Romberg integration based on the trapezoidal rule, where we use the argument that true error 

gets approximately quartered when the number of segments is doubled.  Romberg integration 

based on the trapezoidal rule is computationally more efficient than using the trapezoidal rule 

by itself in developing an automatic integration scheme. 
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Simpson’s 1/3 Rule of Integration 
 

 

 

 

 

 

What is integration? 

Integration is the process of measuring the area under a function plotted on a graph.  Why 

would we want to integrate a function?  Among the most common examples are finding the 

velocity of a body from an acceleration function, and displacement of a body from a velocity 

function.  Throughout many engineering fields, there are (what sometimes seems like) 

countless applications for integral calculus.  Sometimes, the evaluation of expressions 

involving these integrals can become daunting, if not indeterminate.  For this reason, a wide 

variety of numerical methods has been developed to simplify the integral.  Here, we will 

discuss Simpson’s 1/3 rule of integral approximation, which improves upon the accuracy of 

the trapezoidal rule. 

Here, we will discuss the Simpson’s 1/3 rule of approximating integrals of the form 

 
b

a

dxxfI  

where  

 )(xf  is called the integrand, 

 a  lower limit of integration 

 b  upper limit of integration 

 

Simpson’s 1/3 Rule 

The trapezoidal rule was based on approximating the integrand by a first order polynomial, 

and then integrating the polynomial over interval of integration.  Simpson’s 1/3 rule is an 

extension of Trapezoidal rule where the integrand is approximated by a second order 

polynomial. 
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                                  Figure 1  Integration of a function 

 

 

Method 1: 

Hence 

 

b

a

b

a

dxxfdxxfI )()( 2

 
where )(2 xf  is a second order polynomial given by 

2

2102 )( xaxaaxf 
. 

Choose  

 )),(,( afa ,
2

,
2 















  ba
f

ba
 and ))(,( bfb   

as the three points of the function to evaluate ,0a
1a  and 

2a . 

2

2102 )()( aaaaaafaf 
 

2

2102
2222








 








 








 








  ba
a

ba
aa

ba
f

ba
f

 
2

2102 )()( babaabfbf 
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Substituting values of ,0a  

1a  and 
2a  give 
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Since for Simpson 1/3 rule, the interval  ba,  is broken into 2 segments, the segment width 
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Hence the Simpson’s 1/3 rule is given by 
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Since the above form has 1/3 in its formula, it is called Simpson’s 1/3 rule. 

 

Method 2: 

Simpson’s 1/3 rule can also be derived by approximating )(xf  by a second order polynomial 

using Newton’s divided difference polynomial as 
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Integrating Newton’s divided difference polynomial gives us 
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Substituting values of ,0b  ,1b  and 
2b  into this equation yields the same result as before 
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Method 3: 

One could even use the Lagrange polynomial to derive Simpson’s formula.  Notice any 

method of three-point quadratic interpolation can be used to accomplish this task.  In this 

case, the interpolating function becomes 
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Integrating this function gets 

 

b

a

b

a

bf
ba

bab

xbaaxbax

ba
f

b
ba

a
ba

abx
xbax

af

ba
ba

a

xbabxbax

dxxf






































 

















 






































 










)(

2
)(

2

)(

4

)3(

3

2

22

2

)(

3)(

)(
2

2

)(

4

)3(

3

)(
23

2323

2

 



 

 

5 

  

      

)(

2
)(

2

))((

4

))(3(

3

2

22

)(
2

))((

3

)(

)(
2

2

))((

4

))(3(

3

2233

2233

2233

bf
ba

bab

abbaaabbaab

ba
f

b
ba

a
ba

abab
abbaab

af

ba
ba

a

abbababbaab








 



















 







































 












 
Believe it or not, simplifying and factoring this large expression yields you the same result as 

before 
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Method 4: 

Simpson’s 1/3 rule can also be derived by the method of coefficients.  Assume 
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combination of the three integrals for a general second order polynomial.  Now 
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Solving the above three equations for ,0c  1c  and 2c  give 
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The integral from the first method 
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 can be viewed as the sum of the areas of three rectangles. 

 

Example 1 

The distance covered by a rocket in meters from 8t s to 30t s is given by 
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a) Use Simpson’s 1/3 rule to find the approximate value of x . 

b) Find the true error, tE . 

c) Find the absolute relative true error, t . 

Solution 

a)         
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    =11065.72 m 

b) The exact value of the above integral is 
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      =11061.34 m 

So the true error is 

ValueeApproximatValueTrueEt 
 

      =11061.34-11065.72 

      m38.4  
c) The absolute relative true error is 
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Multiple-segment Simpson’s 1/3 Rule 

Just like in multiple-segment trapezoidal rule, one can subdivide the interval  ba,  into n  

segments and apply Simpson’s 1/3 rule repeatedly over every two segments.  Note that n  

needs to be even.  Divide interval  ba,  into n  equal segments, so that the segment width is 

given by 

  
n

ab
h


 . 

Now 



 

 

8 

 

 
nx

x

b

a

dxxfdxxf

0

)()(

 
where 

ax 0  
bxn   









n

n

n

n

x

x

x

x

x

x

x

x

b

a

dxxfdxxfdxxfdxxfdxxf

2

2

4

4

2

2

0

)()(......)()()(

 
Apply Simpson’s 1/3rd Rule over each interval, 
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Example 2 

Use 4-segment Simpson’s 1/3 rule to approximate the distance covered by a rocket in meters 

from 8t s to 30t s as given by 
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a) Use four segment Simpson’s 1/3rd Rule to estimate x. 

b) Find the true error, tE  for part (a). 

c) Find the absolute relative true error, t for part (a). 

Solution: 

a)  Using n  segment Simpson’s 1/3 rule, 
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b) The exact value of the above integral is 
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Table 1   Values of Simpson’s 1/3 rule for Example 2 with multiple-segments 

n  Approximate Value tE
 

t  
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11065.72 

11061.64 

11061.40 

-4.38 

-0.30 

-0.06 

0.0396% 

0.0027% 

0.0005% 



 

 

11 
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10 

11061.35 

11061.34 

-0.02 

-0.01 

0.0002% 

0.0001% 

 

Error in Multiple-segment Simpson’s 1/3 rule 

The true error in a single application of Simpson’s 1/3rd Rule is given1 by 
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In multiple-segment Simpson’s 1/3 rule, the error is the sum of the errors in each application 
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Hence, the total error in the multiple-segment Simpson’s 1/3 rule is 
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)4(f in the true error expression stands for the fourth derivative of the function )(xf . 
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Simpson 3/8 Rule for Integration 
 

 

 

Introduction 

The main objective of this chapter is to develop appropriate formulas for approximating the 

integral of the form 


b

a

dxxfI )(                                             (1) 

Most (if not all) of the developed formulas for integration are based on a simple concept of 

approximating a given function )(xf by a simpler function (usually a polynomial function) 

)(xf i , where i  represents the order of the polynomial function. In Chapter 07.03, Simpsons 

1/3 rule for integration was derived by approximating the integrand )(xf with a 2nd order 

(quadratic) polynomial function. )(2 xf  
2

2102 )( xaxaaxf           (2) 

 

 

Figure 1 )(
~

xf  Cubic function. 

 

In a similar fashion, Simpson 3/8 rule for integration can be derived by approximating the 

given function )(xf  with the 3rd order (cubic) polynomial )(3 xf  
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which can also be symbolically represented in Figure 1. 

Method 1 

The unknown coefficients 3210 and,, aaaa  in Equation (3) can be obtained by substituting 4 

known coordinate data points        },{and},{},,{},,{ 33221100 xfxxfxxfxxfx  into 

Equation (3) as follows. 
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Equation (4) can be expressed in matrix notation as 
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The above Equation (5) can symbolically be represented as 
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Substituting Equation (7) into Equation (3), one gets 
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As indicated in Figure 1, one has 
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With the help from MATLAB [Ref. 2], the unknown vector a


 (shown in Equation 7) can be 

solved for symbolically. 

 

Method 2 

Using Lagrange interpolation, the cubic polynomial function  xf3  that passes through 4 

data points (see Figure 1) can be explicitly given as 
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Simpsons 3/8 Rule for Integration 

Substituting the form of  xf3  from Method (1) or Method (2),  
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and Equation (11) becomes 
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Note the 3/8 in the formula, and hence the name of method as the Simpson’s 3/8 rule. 

The true error in Simpson 3/8 rule can be derived as [Ref. 1] 
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Example 1  

The vertical distance in meters covered by a rocket from 8t  to 30t  seconds is given by 
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Use Simpson 3/8 rule to find the approximate value of the integral. 

Solution 
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Applying Equation (12), one has 
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3104.11063

6740.9018976.60834629.37232667.1773333.7
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The exact answer can be computed as 

34.11061exactI m 

 

Multiple Segments for Simpson 3/8 Rule 

Using n = number of equal segments, the width h can be defined as 

n

ab
h


                                (14) 

The number of segments need to be an integer multiple of 3 as a single application of 

Simpson 3/8 rule requires 3 segments. 

The integral shown in Equation (1) can be expressed as 
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Using Simpson 3/8 rule (See Equation 12) into Equation (15), one gets  
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Example 2 

The vertical distance in meters covered by a rocket from 8t  to 30t  seconds is given by 
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Use Simpson 3/8 multiple segments rule with six segments to estimate the vertical distance. 

Solution 

In this example, one has (see Equation 14): 
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     6666.224where8976.608,6666.22, 0444  htttft  

     3333.265where9870.746,3333.26, 0555  htttft  

     306where6740.901,30, 0666  htttft  

Applying Equation (17), one obtains: 
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Example 3  

Compute 
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using Simpson 1/3 rule (with 1n 4), and Simpson 3/8 rule (with 2n 3). 

Solution 

The segment width is  
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  6740.901

9978.767

8260.646

3909.536

2749.435

3241.342

5863.256

7

6

5

4

3

2

1















tf

tf

tf

tf

tf

tf

tf

 

For multiple segments  segments4first1 n , using Simpson 1/3 rule, one obtains (See 

Equation 19): 
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For multiple segments  segments3last2 n , using Simpson 3/8 rule, one obtains (See 

Equation 17): 
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The mixed (combined) Simpson 1/3 and 3/8 rules give 
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3663.66971197.4364
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Comparing the truncated error of Simpson 1/3 rule 
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With Simpson 3/8 rule (See Equation 12), it seems to offer slightly more accurate answer 

than the former. However, the cost associated with Simpson 3/8 rule (using 3rd order 

polynomial function) is significantly higher than the one associated with Simpson 1/3 rule 

(using 2nd order polynomial function). 

The number of multiple segments that can be used in the conjunction with Simpson 

1/3 rule is 2, 4, 6, 8, … (any even numbers) for  
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However, Simpson 3/8 rule can be used with the number of segments equal to 3,6,9,12,.. (can 

be certain integers that are multiples of 3).  

If the user wishes to use, say 7 segments, then the mixed Simpson 1/3 rule (for the first 4 

segments), and Simpson 3/8 rule (for the last 3 segments) would be appropriate. 

 

Computer Algorithm for Mixed Simpson 1/3 and 3/8 Rule for Integration 

Based on the earlier discussion on (single and multiple segments) Simpson 1/3 and 3/8 rules, 

the following “pseudo” step-by-step mixed Simpson rules for estimating 


b

a

dxxfI )(  

can be given as 

Step 1   

User inputs information, such as 

)(xf = integrand 

1n = number of segments in conjunction with Simpson 1/3 rule (a multiple of 2 (any 

even numbers) 

2n = number of segments in conjunction with Simpson 3/8 rule (a multiple of 3) 

Step 2 

Compute  
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Step 3 

Compute result from multiple-segment Simpson 1/3 rule (See Equation 19) 
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I          (19, repeated) 

Step 4 

Compute result from multiple segment Simpson 3/8 rule (See Equation 17) 
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Step 5 

21 III                      (20) 

and print out the final approximated answer for I . 
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Euler’s Method for Ordinary Differential Equations 
 

 

 

 

What is Euler’s method? 

Euler’s method is a numerical technique to solve ordinary differential equations of the form 

     00,, yyyxf
dx

dy
                                (1) 

So only first order ordinary differential equations can be solved by using Euler’s method.  In 

another chapter we will discuss how Euler’s method is used to solve higher order ordinary 

differential equations or coupled (simultaneous) differential equations.  How does one write a 

first order differential equation in the above form? 

 

Example 1  

Rewrite 

   50,3.12   yey
dx

dy x  

in  

0)0(  ),,( yyyxf
dx

dy
  form. 

 

Solution 

   50,3.12   yey
dx

dy x  

   50,23.1   yye
dx

dy x
 

In this case 

   yeyxf x 23.1,    

 

Example 2 

Rewrite 

   50  ),3sin(222  yxyx
dx

dy
e y

 

in  

0)0(  ),,( yyyxf
dx

dy
  form. 
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Solution 

   50  ),3sin(222  yxyx
dx

dy
e y  

   50  ,
)3sin(2 22




 y
e

yxx

dx

dy
y

 

In this case 

  
ye

yxx
yxf

22)3sin(2
,


  

 

Derivation of Euler’s method 

At 0x , we are given the value of .0yy    Let us call 0x  as 0x .  Now since we know 

the slope of y  with respect to x , that is,  yxf , , then at 0xx  , the slope is  00 , yxf .  

Both 0x  and 0y  are known from the initial condition   00 yxy  . 

 

 
Figure 1  Graphical interpretation of the first step of Euler’s method. 

 

So the slope at 0xx   as shown in Figure 1 is 

 Slope 
Run

Rise
  

           
01

01

xx

yy




  

            00 , yxf  

From here 

   010001 , xxyxfyy   

 y 

Φ 

Step size, h 

x 

),( 00 yx  

True value 

y1, 

Predicted 

value 

1x  
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Calling 01 xx  the step size h , we get 

  hyxfyy 0001 ,                                              (2) 

One can now use the value of 
1y  (an approximate value of y  at 

1xx  ) to calculate
2y , and 

that would be the predicted value at 
2x , given by 

  hyxfyy 1112 ,  

 hxx  12
 

Based on the above equations, if we now know the value of iyy   at ix , then 

  hyxfyy iiii ,1                                                          (3) 

This formula is known as Euler’s method and is illustrated graphically in Figure 2.  In some 

books, it is also called the Euler-Cauchy method. 

 
Figure 2 General graphical interpretation of Euler’s method.  

 

 

 

 

 

Example 3 

A ball at K1200  is allowed to cool down in air at an ambient temperature of K300 .  

Assuming heat is lost only due to radiation, the differential equation for the temperature of 

the ball is given by  

     K12000  ,1081102067.2 8412   


dt

d
   

where   is in K  and t  in seconds.  Find the temperature at 480t  seconds using Euler’s 

method.  Assume a step size of  240h  seconds. 

 Φ 

Step size 

h 

True Value 

  

  yi+1, Predicted value 

 

yi 

x 

y 

xi xi+1 
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Solution 

  8412 1081102067.2   


dt

d
 

    8412 1081102067.2,   tf  

Per Equation (3), Euler’s method reduces to  

  htf iiii  ,1   

For 0i , 00 t , 12000   

  htf 0001 ,   

        2401200,01200  f  

         24010811200102067.21200 8412    

        2405579.41200   

      09.106 K 

1  is the approximate temperature at 

 httt  01 2400 240  

   09.1062401  K 

For 1i , 2401 t , 09.1061   

  htf 1112 ,   
        24009.106,24009.106  f  

         240108109.106102067.209.106 8412    

        240017595.009.106   

      32.110 K 

2  is the approximate temperature at  

 httt  12 240240 480  
   32.1104802  K 

Figure 3 compares the exact solution with the numerical solution from Euler’s method for the 

step size of 240h . 
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Figure 3  Comparing the exact solution and Euler’s method. 

 

The problem was solved again using a smaller step size.  The results are given below in 

Table 1. 

 

                     Table 1  Temperature at 480 seconds as a function of step size, h . 

Step size, h   480  tE
 

%|| t  
480 

240 

120 

60 

30 

-987.81 

110.32 

546.77 

614.97 

632.77 

1635.4 

537.26 

100.80 

32.607 

14.806 

252.54 

82.964 

15.566 

5.0352 

2.2864 

Figure 4 shows how the temperature varies as a function of time for different step sizes. 
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Figure 4  Comparison of Euler’s method with the exact solution 

 for different step sizes. 

h=240 
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The values of the calculated temperature at 480t s as a function of step size are plotted in 

Figure 5. 
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              Figure 5  Effect of step size in Euler’s method. 

 

 

The exact solution of the ordinary differential equation is given by the solution of a non-

linear equation as 

  9282.21022067.010333.0tan8519.1
300

300
ln92593.0 321 



  t



          (4) 

The solution to this nonlinear equation is 

 57.647 K 

It can be seen that Euler’s method has large errors.  This can be illustrated using the Taylor 

series. 

           ...
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yy

iiiiii
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11   iiiiiiiiiiiii xxyxfxxyxfxxyxfy      (6) 

As you can see the first two terms of the Taylor series 

  hyxfyy iiii ,1   

are Euler’s method. 

The true error in the approximation is given by 

 
   

...
!3

,

!2

, 32 





 h
yxf

h
yxf

E iiii
t                                                                           (7) 

The true error hence is approximately proportional to the square of the step size, that is, as 

the step size is halved, the true error gets approximately quartered.  However from Table 1, 

we see that as the step size gets halved, the true error only gets approximately halved.  This is 

because the true error, being proportioned to the square of the step size, is the local truncation 
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error, that is, error from one point to the next.  The global truncation error is however 

proportional only to the step size as the error keeps propagating from one point to another. 

 

Can one solve a definite integral using numerical methods such as Euler’s method of 

solving ordinary differential equations? 

Let us suppose you want to find the integral of a function )(xf  

  
b

a

dxxfI . 

Both fundamental theorems of calculus would be used to set up the problem so as to solve it 

as an ordinary differential equation. 

The first fundamental theorem of calculus states that if f  is a continuous function in the 

interval [a,b], and F  is the antiderivative of f , then 

     aFbFdxxf

b

a

  

The second fundamental theorem of calculus states that if f  is a continuous function in the 

open interval D , and a  is a point in the interval D , and if  

   
x

a

dttfxF  

then  

   xfxF   

at each point in D .  

Asked to find   
b

a

dxxf , we can rewrite the integral as the solution of an ordinary 

differential equation (here is where we are using the second fundamental theorem of 

calculus) 

   ,0)(  ,  ayxf
dx

dy
  

where then  by  (here is where we are using the first fundamental theorem of calculus) will 

give the value of the integral  
b

a

dxxf .   

 

Example 4 

Find an approximate value of  

 
8

5

36 dxx  

using Euler’s method of solving an ordinary differential equation.  Use a step size of 5.1h . 

Solution 

Given 
8

5

36 dxx , we can rewrite the integral as the solution of an ordinary differential equation 



8 

 

   05,6 3  yx
dx

dy
 

where  8y  will give the value of the integral 
8

5

36 dxx .   

  yxfx
dx

dy
,6 3  ,   05 y  

The Euler’s method equation is 

  hyxfyy iiii ,1   

Step 1  

 0,5,0 00  yxi  

           5.1h  

          

5.6    

5.15    

01





 hxx

 

          hyxfyy 0001 ,  

     5.10,50  f  

     5.1560 3   

   1125  
   )5.6(y  

  

Step 2 

            1125,5.6,1 11  yxi  

         

8     

5.15.6     

12





 hxx

 

          hyxfyy 1112 ,  

     5.11125,5.61125  f  

               5.15.661125 3   

   625.3596  
   )8(y  

Hence 

 )5()8(6

8

5

3 yydxx   

              0625.3596   

                 625.3596  
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Runge-Kutta 2nd Order Method for  
Ordinary Differential Equations 
 

 

What is the Runge-Kutta 2nd order method? 

The Runge-Kutta 2nd order method is a numerical technique used to solve an ordinary 

differential equation of the form 

     00,, yyyxf
dx

dy
  

Only first order ordinary differential equations can be solved by using the Runge-Kutta 2nd 

order method.  In other sections, we will discuss how the Euler and Runge-Kutta methods are 

used to solve higher order ordinary differential equations or coupled (simultaneous) 

differential equations. 

How does one write a first order differential equation in the above form? 

 

Example 1  

Rewrite 

   50,3.12   yey
dx

dy x  

in 

 0)0(  ),,( yyyxf
dx

dy
  form. 

 

Solution 

   50,3.12   yey
dx

dy x
 

   50,23.1   yye
dx

dy x
 

In this case 

   yeyxf x 23.1,    

Example 2 

Rewrite 

   50  ),3sin(222  yxyx
dx

dy
e y

 

in  

0)0(  ),,( yyyxf
dx

dy
  form. 
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Solution 

   50  ),3sin(222  yxyx
dx

dy
e y  

   50  ,
)3sin(2 22




 y
e

yxx

dx

dy
y

 

In this case 

  
ye

yxx
yxf

22)3sin(2
,


  

 

Runge-Kutta 2nd order method 

Euler’s method is given by 

  hyxfyy iiii ,1                                          (1) 

where 

 00 x  

 )( 00 xyy   

 ii xxh  1  

To understand the Runge-Kutta 2nd order method, we need to derive Euler’s method from 

the Taylor series. 
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11   iiiiiiiiiiiii xxyxfxxyxfxxyxfy  (2) 

As you can see the first two terms of the Taylor series 

  hyxfyy iiii ,1   

are Euler’s method and hence can be considered to be the Runge-Kutta 1st order method. 

The true error in the approximation is given by 

 
   

...
!3

,

!2

, 32 





 h
yxf

h
yxf

E iiii
t                                                                           (3) 

So what would a 2nd order method formula look like.  It would include one more term of the 

Taylor series as follows. 

     2

1 ,
!2

1
, hyxfhyxfyy iiiiii

                                         (4) 

Let us take a generic example of a first order ordinary differential equation 

   50,32   yye
dx

dy x
  

   yeyxf x 3, 2    

Now since y is a function of x, 

  
   

dx

dy

y

yxf

x

yxf
yxf











,,
,                                                                                  (5) 
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       yeye
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ye
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xxx 333 222 








   

   yee xx 3)3(2 22    

  ye x 95 2    

The 2nd order formula for the above example would be 

     2

1 ,
!2

1
, hyxfhyxfyy iiiiii

  

     222
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3 hyehyey i
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However, we already see the difficulty of having to find  yxf ,  in the above method.  What 

Runge and Kutta did was write the 2nd order method as 

  hkakayy ii 22111                                         (6) 

where 

  ii yxfk ,1   

  hkqyhpxfk ii 11112 ,                                 (7) 

This form allows one to take advantage of the 2nd order method without having to 

calculate  yxf , . 

 So how do we find the unknowns 
1a , 

2a , 
1p  and 11q . Without proof (see Appendix 

for proof), equating Equation (4) and (6) , gives three equations. 

 121  aa  

 
2

1
12 pa  

 
2

1
112 qa  

Since we have 3 equations and 4 unknowns, we can assume the value of one of the 

unknowns.  The other three will then be determined from the three equations.  Generally the 

value of 
2a  is chosen to evaluate the other three constants.  The three values generally used 

for 
2a  are 

2

1
, 1 and 

3

2
, and are known as Heun’s Method, the midpoint method and 

Ralston’s method, respectively. 

 

Heun’s Method 

Here 
2

1
2 a  is chosen, giving 

 
2

1
1 a  

 11 p  

 111 q  

resulting in 

 hkkyy ii 







 211

2

1

2

1
                                                                                           (8) 
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where 

  ii yxfk ,1                                                                                                               (9a) 

  hkyhxfk ii 12 ,                                                                                              (9b) 

This method is graphically explained in Figure 1. 

 

 
Figure 1  Runge-Kutta 2nd order method  (Heun’s method). 

 

Midpoint Method 

Here 12 a  is chosen, giving 

 01 a  

 
2

1
1 p  

 
2

1
11 q  

resulting in 

 hkyy ii 21                                                                                                            (10) 

where 

  ii yxfk ,1                                                                                                             (11a) 

 







 hkyhxfk ii 12

2

1
,

2

1
                                                                                    (11b) 

Ralston’s Method 

Here 
3

2
2 a  is chosen, giving 

 
3

1
1 a  

 
4

3
1 p  

xi xi+1 
x 

y 

  1iy   predicted 

 yi 

 ii yxfSlope ,  

 hkyhxfSlope ii 1,   

    iiii yxfhkyhxfSlopeAverage ,,
2

1
 1   
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4

3
11 q  

resulting in 

 hkkyy ii 







 211

3

2

3

1
                                                                                       (12) 

where 

  ii yxfk ,1                                                                                                             (13a) 

 







 hkyhxfk ii 12

4

3
,

4

3
                                                                                    (13b) 

 

Example 3 

A ball at 1200K is allowed to cool down in air at an ambient temperature of 300K.  

Assuming heat is lost only due to radiation, the differential equation for the temperature of 

the ball is given by  

 
)1081( 102067.2 8412-  



dt

d

   
where   is in K and t  in seconds.  Find the temperature at 480t  seconds using Runge-

Kutta 2nd order method.  Assume a step size of  240h  seconds. 

 

Solution 

  8412 1081102067.2   


dt

d
 

    8412 1081102067.2,   tf  
Per Heun’s method given by Equations (8) and (9) 

 

hkkii 
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2

1

2

1


 
  iitfk ,1   

  hkhtfk ii 12 ,    

 1200)0(,0,0 00  ti  

  otfk ,01   

                  1200,0f  

       8412 10811200102067.2  

 

      5579.4  
  hkhtfk 1002 ,    

        2405579.41200,2400  f  

       09.106,240f  

                  8412 108109.106102067.2      

                 017595.0  
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 hkk 







 2101

2

1

2

1
  

          240017595.0
2

1
5579.4

2

1
1200 








  

       2402702.21200   

      16.655 K 

 K16.655,2402400,1 101  htti  

  111 ,tfk   

       16.655,240f  

       8412 108116.655102067.2  

 

      38869.0  

  hkhtfk 1112 ,    
       24038869.016.655,240240  f  

      87.561,480f  

      8412 108187.561102067.2  

 

                20206.0  

 

hkk 







 2112

2

1

2

1


 

      

    24020206.0
2

1
38869.0

2

1
16.655 










 

       24029538.016.655   
                 27.584 K 

   27.5844802  K 

The results from Heun’s method are compared with exact results in Figure 2. 

The exact solution of the ordinary differential equation is given by the solution of a non-

linear equation as 

   9282.21022067.00033333.0tan8519.1
300

300
ln92593.0 31 



  t



 

The solution to this nonlinear equation at 480t s is 

 57.647)480(  K 

 



7 

 

-400

0

400

800

1200

0 100 200 300 400 500

Time, t(sec)

T
em

p
er

at
u

re
,
θ

(K
)

Exact h =120

h =240

h =480

 
Figure 2  Heun’s method results for different step sizes. 

 

Using a smaller step size would increase the accuracy of the result as given in Table 1 and 

Figure 3 below. 

 

                                     Table 1  Effect of step size for Heun’s method 

Step size, h   480  tE
 

%t  
480 

240 

120 

60 

30 

-393.87 

584.27 

651.35 

649.91 

648.21 

1041.4 

63.304 

-3.7762 

-2.3406 

-0.63219 

160.82 

9.7756 

0.58313 

0.36145 

0.097625 
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Figure 3  Effect of step size in Heun’s method. 
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In Table 2, Euler’s method and the Runge-Kutta 2nd order method results are shown as a 

function of step size, 

 

                        Table 2  Comparison of Euler and the Runge-Kutta methods 

Step size, 

h  

)480(  
Euler Heun Midpoint Ralston 

480 

240 

120 

  60 

  30 

-987.84 

110.32 

546.77 

614.97 

632.77 

-393.87 

584.27 

651.35 

649.91 

648.21 

1208.4 

976.87 

690.20 

654.85 

649.02 

449.78 

690.01 

667.71 

652.25 

648.61 

 

while in Figure 4, the comparison is shown over the range of time. 
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Figure 4 Comparison of Euler and Runge Kutta methods with exact  

results over time. 
 

 

How do these three methods compare with results obtained if we found  yxf ,  

directly? 

Of course, we know that since we are including the first three terms in the series, if the 

solution is a polynomial of order two or less (that is, quadratic, linear or constant), any of the 

three methods are exact.  But for any other case the results will be different. 

 Let us take the example of  

    50,32   yye
dx

dy x
. 

If we directly find  yxf , , the first three terms of the Taylor series gives 
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     2

1 ,
!2

1
, hyxfhyxfyy iiiiii

  

where 

   yeyxf x 3, 2    

   yeyxf x 95, 2    

For a step size of 2.0h , using Heun’s method, we find  

   0930.16.0 y  

The exact solution 

   xx eexy 32 4    
gives 

      6.036.02 46.0   eey  

           96239.0  

Then the absolute relative true error is 

 100
96239.0

0930.196239.0



t  

       %571.13  

For the same problem, the results from Euler’s method and the three Runge-Kutta methods 

are given in Table 3. 

 

           Table 3  Comparison of Euler’s and Runge-Kutta 2nd order methods 

 
y(0.6) 

Exact Euler Direct 2nd Heun Midpoint Ralston 

Value 0.96239 0.4955 1.0930 1.1012 1.0974 1.0994 

t  %  48.514 13.571 14.423 14.029 14.236 
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Runge-Kutta 4th Order Method for  
Ordinary Differential Equations 
 

 

 

What is the Runge-Kutta 4th order method? 

Runge-Kutta 4th order method is a numerical technique used to solve ordinary differential 

equation of the form 

     00,, yyyxf
dx

dy
  

So only first order ordinary differential equations can be solved by using the Runge-Kutta 4th 

order method.  In other sections, we have discussed how Euler and Runge-Kutta methods are 

used to solve higher order ordinary differential equations or coupled (simultaneous) 

differential equations. 

  

How does one write a first order differential equation in the above form? 

 

Example 1  

Rewrite 

   50,3.12   yey
dx

dy x
 

in  

0)0(  ),,( yyyxf
dx

dy
  form. 

 

Solution 

   50,3.12   yey
dx

dy x
 

   50,23.1   yye
dx

dy x
 

In this case 

   yeyxf x 23.1,    



2 

 

 

Example 2 

Rewrite 

   50  ),3sin(222  yxyx
dx

dy
e y  

in  

0)0(  ),,( yyyxf
dx

dy
  form. 

 

Solution 

   50  ),3sin(222  yxyx
dx

dy
e y  

   50  ,
)3sin(2 22




 y
e

yxx

dx

dy
y

 

In this case 

  
ye

yxx
yxf

22)3sin(2
,


  

The Runge-Kutta 4th order method is based on the following 

  hkakakakayy ii 443322111                                                                          (1) 

where knowing the value of iyy   at ix , we can find the value of 1 iyy  at 1ix , and 

 ii xxh  1  

Equation (1) is equated to the first five terms of Taylor series 

 

     

 41,4

4

3

1,3

3
2

1,2

2

1,1

!4

1

!3

1

!2

1

iiyx

iiyxiiyxiiyxii

xx
dx

yd

xx
dx

yd
xx

dx

yd
xx

dx

dy
yy

ii

iiiiii









               (2) 

Knowing that   yxf
dx

dy
,  and hxx ii 1  

         4'''3''2'

1 ,
!4

1
,

!3

1
,

!2

1
, hyxfhyxfhyxfhyxfyy iiiiiiiiii                     (3) 

Based on equating Equation (2) and Equation (3), one of the popular solutions used is  

   hkkkkyy ii 43211 22
6

1
                                                                              (4) 

  ii yxfk ,1                                                                                                    (5a) 

 








 hkyhxfk ii 12

2

1
,

2

1

                                                                                        (5b) 

 







 hkyhxfk ii 23

2

1
,

2

1
                                                                           (5c) 

  hkyhxfk ii 34 ,                                                                                               (5d) 
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Example 3 

A ball at 1200 K is allowed to cool down in air at an ambient temperature of 300 K.  

Assuming heat is lost only due to radiation, the differential equation for the temperature of 

the ball is given by  

     K12000,1081102067.2 8412   


dt

d
   

where   is in K and t  in seconds.  Find the temperature at 480t  seconds using Runge-

Kutta 4th order method.  Assume a step size of  240h  seconds. 

Solution 

  8412 1081102067.2   


dt

d
 

    8412 1081102067.2,   tf  

  hkkkkii 43211 22
6

1
   

 For 0i , 00 t , K12000   

  001 ,tfk   

  1200,0f  

  8412 10811200102067.2    

 5579.4  

 







 hkhtfk 1002

2

1
,

2

1
  

     







 2405579.4

2

1
1200,240

2

1
0f  

  05.653,120f  

  8412 108105.653102067.2    

 38347.0  

 







 hkhtfk 2003

2

1
,

2

1
  

     







 24038347.0

2

1
1200,240

2

1
0f  

  0.1154,120f  

  8412 10810.1154102067.2    

 8954.3  

  hkhtfk 3004 ,    

   240894.31200,2400  f  

  10.265,240f  

  8412 108110.265102067.2    
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 0069750.0  

 hkkkk )22(
6

1
432101    

       240069750.08954.3238347.025579.4
6

1
1200   

   2401848.21200   

 K65.675  

1  is the approximate temperature at 

 
1tt   

   ht  0  

              2400  

              240  

  2401    

                K65.675  

For K65.675,240,1 11  ti  

  111 ,tfk   

            65.675,240f  

            8412 108165.675102067.2    

           44199.0  

 







 hkhtfk 1112

2

1
,

2

1
  

 

    







 24044199.0

2

1
65.675,240

2

1
240f

 

  61.622,360f  

  8412 108161.622102067.2  

 

 31372.0  

 







 hkhtfk 2113

2

1
,

2

1
  

     







 24031372.0

2

1
65.675,240

2

1
240f  

  00.638,360f  

  8412 108100.638102067.2    

 34775.0  

  hkhtfk 3114 ,    

             24034775.065.675,240240  f  

            19.592,480f  

            8412 108119.592102067.2    

           25351.0  
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 hkkkk )22(
6

1
432112    

        24025351.034775.0231372.0244199.0
6

1
65.675   

   2400184.2
6

1
65.675   

 K91.594  

2  is the approximate temperature at  

 
2tt   

   ht  1
 

              240240  

              480  

 

  4802    

 K91.594  

Figure 1 compares the exact solution with the numerical solution using the Runge-Kutta 4th 

order method with different step sizes. 
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Figure 1 Comparison of Runge-Kutta 4th order method  

with exact solution for different step sizes. 

 

Table 1 and Figure 2 show the effect of step size on the value of the calculated temperature at 

480t  seconds.  
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Table 1  Value of temperature at time, 480t s for different step sizes 
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Figure 2  Effect of step size in Runge-Kutta 4th order method. 

 

In Figure 3, we are comparing the exact results with Euler’s method (Runge-Kutta 1st order 

method), Heun’s method (Runge-Kutta 2nd order method), and Runge-Kutta 4th order 

method. 

The formula described in this chapter was developed by Runge.  This formula is same as 

Simpson’s 1/3 rule, if  yxf ,  were only a function of x .  There are other versions of the 4th 

order method just like there are several versions of the second order methods.  The formula 

developed by Kutta is 

  hkkkkyy ii 43211 33
8

1
                                            (6) 

where 

  ii yxfk ,1                                                                                                           (7a) 

 







 12

3

1
,

3

1
hkyhxfk ii                                                                                  (7b) 
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3

1
,

3

2
hkhkyhxfk ii                            (7c) 

  3214 , hkhkhkyhxfk ii                            (7d) 

This formula is the same as the Simpson’s 3/8 rule, if  yxf ,  is only a function of x . 

 

Step size, h   480  tE
 

%|| t  

480 

240 

120 

60 

30 

-90.278 

594.91 

646.16 

647.54 

647.57 

737.85 

52.660 

1.4122 

0.033626 

0.00086900 

113.94 

8.1319 

0.21807 

0.0051926 

0.00013419 
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Figure 3  Comparison of Runge-Kutta methods of 1st (Euler), 2nd, and 4th order. 
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On Solving Higher Order Equations  
for Ordinary Differential Equations 
 

 

 

 

 

 

We have learned Euler’s and Runge-Kutta methods to solve first order ordinary differential 

equations of the form 

     00,, yyyxf
dx

dy
                                           (1) 

What do we do to solve simultaneous (coupled) differential equations, or differential 

equations that are higher than first order?  For example an thn order differential equation of 

the form 

  xfya
dx

dy
a

dx

yd
a

dx

yd
a on

n

nn

n

n 




 11

1

1                              (2) 

with 1n initial conditions can be solved by assuming 

 1zy                                               (3.1) 

 2
1 z

dx

dz

dx

dy
                                          (3.2) 

 3
2

2

2

z
dx

dz

dx

yd
                                         (3.3) 

   

 n

n

n

n

z
dx

dz

dx

yd
 





1

1

1

                                        (3.n) 

 

 















 xfya
dx

dy
a

dx

yd
a

a

dx

dz

dx

yd

n

n

n

n

n

n

n

011

1

1

1


           

         =    xfzazaza
a

nn

n

  10211

1
                                  (3.n+1) 

The above Equations from (3.1) to (3.n+1) represent n  first order differential equations as 

follows 

  xzzfz
dx

dz
,,, 2112

1                                            (4.1) 



2 

 

  xzzfz
dx

dz
,,, 2123

2                                        (4.2) 

   

    
1

  10211 xfzazaza
adx

dz
nn

n

n                                         (4.n) 

Each of the n first order ordinary differential equations are accompanied by one initial 

condition.  These first order ordinary differential equations are simultaneous in nature but can 

be solved by the methods used for solving first order ordinary differential equations that we 

have already learned. 

 

Example 1 
Rewrite the following differential equation as a set of first order differential equations. 

     70,50,523
2

2

  yyey
dx

dy

dx

yd x   

Solution 

The ordinary differential equation would be rewritten as follows.  Assume 

 ,z
dx

dy
  

Then 

 
dx

dz

dx

yd


2

2

 

Substituting this in the given second order ordinary differential equation gives 

 
xeyz

dx

dz  523  

  yze
dx

dz x 52
3

1
   

The set of two simultaneous first order ordinary differential equations complete with the 

initial conditions then is 

   50,  yz
dx

dy
 

     70,52
3

1
  zyze

dx

dz x
. 

Now one can apply any of the numerical methods used for solving first order ordinary 

differential equations. 

 

Example 2 

Given  

     20,10,2
2

2

 

dt

dy
yey

dt

dy

dt

yd t , find by Euler’s method 

a)  75.0y  

b) the absolute relative true error for part(a), if   668.175.0 
exact

y  



 

3 

 

c)  75.0
dt

dy
 

Use a step size of 25.0h . 

Solution 

First, the second order differential equation is written as two simultaneous first-order 

differential equations as follows.  Assume  

 z
dt

dy
  

then  

 teyz
dt

dz  2  

 yze
dt

dz t   2  

So the two simultaneous first order differential equations are 

   1yt,y,zfz
dt

dy
1  (0),                                          (E2.1) 

   2zzytfyze
dt

dz t   (0) ,,,2 2                        (E2.2) 

Using Euler’s method on Equations (E2.1) and (E2.2), we get 

 hzytfyy iiiii ,,11                           (E2.3) 

  hzytfzz iiiii ,,21                           (E2.4) 

a) To find the value of  75.0y  and since we are using a step size of 25.0  and starting at 

0t , we need to take three steps to find the value of  75.0y . 

For 2,1,0,0 000  zyti , 

From Equation (E2.3) 

  hzytfyy 000101 ,,   

        25.02,1,01 1f  

      
 

5.1

25.021




 

1y  is the approximate value of y  at 

 25.025.0001  httt  

   5.125.01  yy  

From Equation (E2.4) 

  hzytfzz 000201 ,,  

        25.02,1,02 2f  

         25.01222 0  e  

                 1  

1z is the approximate value of z (same as 
dt

dy
) at 25.0t  

   125.01  zz  



4 

 

For 1,5.1,25.0,1 111  zyti , 

From Equation (E2.3) 

  hzytfyy 111112 ,,   

         25.01,5.1,25.05.1 1f  
         25.015.1   

       75.1  

2y  is the approximate value of y  at 

 50.025.025.012  httt  

   75.15.02  yy  

From Equation (E2.4) 

  hzytfzz 111212 ,,  

        25.01,5.1,25.01 2f  

         25.05.1121 25.0  e  
        25.07211.21   

                  = 0.31970 

2z is the approximate value of z at 

 5.02  tt  

   3197.05.02  zz 0 

For 31970.0,75.1,5.0,2 222  zyti , 

From Equation (E2.3) 

  hzytfyy 222123 ,,   

        25.031970.0,75.1,50.075.1 1f  

        25.031970.075.1   

      8299.1  

3y  is the approximate value of y  at 

  75.025.05.023  httt  

   8299.175.03  yy  

From Equation (E2.4) 

  hzytfzz 222223 ,,  

        25.031970.0,75.1,50.031972.0 2f  

                    25.075.131970.0231972.0 50.0  e  

        25.07829.131972.0   

      1260.0  

3z  is the approximate value of z  at 

75.03  tt  

   12601.075.03  zz  

       8299.175.0 3  yy  

b) The exact value of  75.0y  is 



 

5 

 

    668.175.0 
exact

y  

The absolute relative true error in the result from part (a) is 

  

100
668.1

8299.1668.1



t

 
        = 9.7062% 

c)  75.0
dx

dy
12601.03  z  

 

 

Example 3 
Given 

 2(0)1(0)2
2

2

 

dt

dy
,,yey

dt

dy

dt

yd t ,  

find by Heun’s method 

a)  75.0y  

b)  75.0
dx

dy
.   

Use a step size of 25.0h . 

Solution 

First, the second order differential equation is rewritten as two simultaneous first-order 

differential equations as follows.  Assume  

 z
dt

dy
  

then  

 
teyz

dt

dz  2  

 yze
dt

dz t   2  

So the two simultaneous first order differential equations are 

   1(0)1  ,yt,y,zfz
dt

dy
                         (E3.1) 

   2(0) ,,,2 2   zzytfyze
dt

dz t
                       (E3.2) 

Using Heun’s method on Equations (1) and (2), we get 

  hkk  yy y

2

y

1i1i 
2

1
                                                                                      (E3.3) 

  iii1

y

1 , z, yt fk                                                                                              (E3.4a)  

  z

1i

y

1ii1

y

2  hk , z hk  h, y t fk                                                                 (E 3.4b) 

  hkk 
2

1
 zz z

2

z

1i1i                (E3.5) 

  iii2

z

1 , z, yt  fk                           (E3.6a) 
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  z

1i

y

ii2

z

2  hk , z hk  h, y t fk  1
                                   (E3.6b) 

For 2,1,0,0  ooo zyti  

From Equation (E3.4a) 

  ooo

y zytfk ,,11   

        2,1,01f  

       2  
From Equation (E3.6a) 

  00021 ,, zytfk z   

       2,1,02f  

        1220  e  

       = -4 

From Equation (E3.4b) 

  zyy hkzhkyhtfk 1010012 ,,   

             425.02,225.01,25.001  f  

        1,5.1,25.01f  
        = 1 

From Equation (E3.6b) 

 
 zyz hkzhkyhtfk 1010022 ,, 

 

            425.02,225.01,25.002  f  

       1,5.1,25.02f  

        5.11225.0  e  
      7212.2  

From Equation (E3.3) 

  hkkyy yy

2101
2

1
  

        25.012
2

1
1   

   375.1  

1y  is the approximate value of y  at 

 25.025.0001  httt   

   375.125.01  yy  

From Equation (E3.5) 

  hkkzz zz

2101
2

1
  

      )25.0))(7212.2(4(
2

1
2   

      1598.1  

1z  is the approximate value of z  at  

 25.01  tt  

   1598.125.01  zz  
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For 1598.1,375.1,25.0,1 111  zyti  

From Equation (E3.4a) 

  11111 ,, zytfk y   

        1598.1,375.1,25.01f  

       1598.1   

From Equation (E3.6a) 

  11121 ,, zytfk z   

       1598.1,375.1,25.02f  

        375.11598.1225.0  e  

      9158.2  

From Equation (E3.4b) 

  zyy hkzhkyhtfk 1111112 ,,   

            9158.225.01598.1),1598.1(25.0375.1,25.025.01  f  

                   43087.0,6649.1,50.01f  

       43087.0  

From Equation (E3.6b) 

  zyz hkzhkyhtfk 1111122 ,,   

            9158.225.01598.1),1598.1(25.0375.1,25.025.02  f  

        43087.0,6649.1,50.02f  

         6649.143087.0250.0  e  

       9201.1  

From Equation (E3.3) 

  hkkyy yy

2112
2

1
  

    25.043087.01598.1
2

1
375.1   

  5738.1  

2y  is the approximate value of y  at 

 50.025.025.012  httt   

   5738.150.02  yy  

From Equation (E3.5) 

  hkkzz zz

2112
2

1
  

      )25.0))(9201.1(9158.2(
2

1
1598.1   

      55533.0  

2z  is the approximate value of z  at  

 50.02  tt  

   55533.050.02  zz  

For 55533.0,57384.1,50.0,2 222  zyti  



8 

 

From Equation (E3.4a) 

  22211 ,, zytfk y   

        55533.0,5738.1,50.01f  

       55533.0  

From Equation (E3.6a) 

  22221 ,, zytfk z   

       55533.0,5738.1,50.02f  

        5738.155533.0250.0  e  
      0779.2  

From Equation (E3.4b) 

  zyy hkzhkyhtfk 1212222 ,,   

                      0779.225.055533.0),55533.0(25.05738.1,25.050.01  f  

       035836.0,7126.1,75.01f  
       = 0.035836 

From Equation (E3.6b) 

  zyz hkzhkyhtfk 1212222 ,,   

           0779.225.055533.0),55533.0(25.05738.1,25.050.02  f  

       035836.0,7126.1,75.02f  

        7126.1035836.0275.0  e  
      3119.1  

From Equation (E3.3) 

  hkkyy yy

2123
2

1
  

        25.0035836.055533.0
2

1
5738.1   

      6477.1  

3y  is the approximate value of y  at 

 75.025.050.023  httt   

   6477.175.03  yy  

b) From Equation (E3.5) 

  hkkzz zz

2123
2

1
  

      )25.0))(3119.1(0779.2(
2

1
55533.0   

      13158.0  

3z  is the approximate value of z  at  

 75.03  tt  

   13158.075.03  zz  

The intermediate and the final results are shown in Table 1. 
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                                    Table 1  Intermediate results of Heun’s method. 

i  0 1 2 

it  0 0.25 0.50 

iy
 1 1.3750 1.5738 

iz
 2 1.1598 0.55533 

yk1  2 1.1598 0.55533 
zk1  4  9158.2  0779.2  
yk2  1 0.43087 0.035836 
zk2  7211.2  9201.1  3119.1  

1iy
 1.3750 1.5738 1.6477 

1iz
 1.1598 0.55533 0.13158 
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Finite Difference Method for Ordinary Differential 
Equations 
 

 

 

 

What is the finite difference method? 

The finite difference method is used to solve ordinary differential equations that have 

conditions imposed on the boundary rather than at the initial point.  These problems are 

called boundary-value problems.  In this chapter, we solve second-order ordinary differential 

equations of the form 

 bxayyxf
dx

yd
 ),',,(

2

2

,          (1) 

with boundary conditions 

 ayay )(  and byby )(          (2) 

Many academics refer to boundary value problems as position-dependent and initial value 

problems as time-dependent.  That is not necessarily the case as illustrated by the following 

examples. 

The differential equation that governs the deflection y  of a simply supported beam under 

uniformly distributed load (Figure 1) is given by 

EI

xLqx

dx

yd

2

)(
2

2 
           (3) 

where 

 x location along the beam (in) 

 E Young’s modulus of elasticity of the beam (psi) 

 I second moment of area (in4) 

 q uniform loading intensity (lb/in) 

 L length of beam (in) 

The conditions imposed to solve the differential equation are 

0)0( xy            (4) 

 0)(  Lxy  

Clearly, these are boundary values and hence the problem is considered a boundary-value 

problem. 

 



2 

 

 
         Figure 1 Simply supported beam with uniform distributed load. 

 

Now consider the case of a cantilevered beam with a uniformly distributed load (Figure 2).  

The differential equation that governs the deflection y  of the beam is given by 

EI

xLq

dx

yd

2

)( 2

2

2 
           (5) 

where 

 x location along the beam (in) 

 E Young’s modulus of elasticity of the beam (psi) 

 I second moment of area (in4) 

 q uniform loading intensity (lb/in) 

 L length of beam (in) 

The conditions imposed to solve the differential equation are 

0)0( xy            (6) 

 0)0( x
dx

dy
 

Clearly, these are initial values and hence the problem needs to be considered as an initial 

value problem. 

 

 
 Figure 2 Cantilevered beam with a uniformly distributed load. 
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Example 1 

The deflection y  in a simply supported beam with a uniform load q and a tensile axial load 

T is given by 

 
EI

xLqx

EI

Ty

dx

yd

2

)(
2

2 
  (E1.1) 

where 

 x location along the beam (in) 

 T tension applied (lbs) 

 E Young’s modulus of elasticity of the beam (psi) 

 I second moment of area (in4) 

 q uniform loading intensity (lb/in) 

 L length of beam (in) 

 

 

             Figure 3 Simply supported beam for Example 1. 

Given, 

 7200T lbs, 5400q lbs/in, in 75L , Msi 30E , and 
4in 120I ,  

a) Find the deflection of the beam at "50x .  Use a step size of "25x  and approximate 

the derivatives by central divided difference approximation. 

b) Find the relative true error in the calculation of )50(y .   

 

Solution 

a) Substituting the given values, 

 
)120)(1030(2

)75()5400(

)120)(1030(

7200
662

2









xxy

dx

yd
 

           )75(105.7102 76

2

2

xxy
dx

yd
       (E1.2) 

Approximating the derivative 
2

2

dx

yd
 at node i  by the central divided difference 

approximation,  

 

q  

 

 

 

y  

 

 

 

L  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x  
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Figure 4 Illustration of finite difference nodes using                                                

central divided difference method. 

 

 
2

11

2

2

)(

2

x

yyy

dx

yd iii




      (E1.3) 

We can rewrite the equation as 

 )75(105.7102
)(

2 76

2

11

iii

iii xxy
x

yyy




                 (E1.4)  

Since 25x , we have 4 nodes as given in Figure 3 

 
Figure 5 Finite difference method from 0x  to 75x  with 25x . 

 

The location of the 4 nodes then is  

 00 x  

 2525001  xxx  

 50252512  xxx  

 75255023  xxx  

Writing the equation at each node, we get 

Node 1:  From the simply supported boundary condition at 0x , we obtain 

 01 y      (E1.5) 

Node 2:  Rewriting equation (E1.4) for node 2 gives 

 )75(105.7102
)25(

2
22

7

2

6

2

123 xxy
yyy


   

 )2575)(25(105.70016.0003202.00016.0 7

321  yyy  

 4

321 10375.90016.0003202.00016.0  yyy  (E1.6)  

Node 3:  Rewriting equation (E1.4) for node 3 gives 

 )75(105.7102
)25(

2
33

7

3

6

2

234 xxy
yyy


   

 )5075)(50(105.70016.0003202.00016.0 7

432  yyy  

 4

432 10375.90016.0003202.00016.0  yyy  (E1.7) 

Node 4:  From the simply supported boundary condition at 75x , we obtain 

 04 y   (E1.8) 

 

  0x    25x    50x  

1i  2i  3i  4i  

  75x  

1i  i  1i  
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Equations (E1.5-E1.8) are 4 simultaneous equations with 4 unknowns and can be written in 

matrix form as 

 






































































0

10375.9

10375.9

0

1000

0016.0003202.00016.00

00016.0003202.00016.0

0001

4

4

4

3

2

1

y

y

y

y

 

 

The above equations have a coefficient matrix that is tridiagonal (we can use Thomas’ 

algorithm to solve the equations) and is also strictly diagonally dominant (convergence is 

guaranteed if we use iterative methods such as the Gauss-Siedel method).  Solving the 

equations we get, 

 










































0

5852.0

5852.0

0

4

3

2

1

y

y

y

y

 

 "5852.0)()50( 22  yxyy  

 

The exact solution of the ordinary differential equation is derived as follows.  The 

homogeneous part of the solution is given by solving the characteristic equation 

 0102 62  m  

 0014142.0m  

Therefore, 

 xx

h eKeKy 0014142.0

2

0014142.0

1

  

The particular part of the solution is given by 

 CBxAxy p  2  

Substituting the differential equation (E1.2) gives 

 )75(105.7102 76

2

2

xxy
dx

yd
p

p
   

 )75(105.7)(102)( 7262

2

2

xxCBxAxCBxAx
dx

d
   

 )75(105.7)(1022 726 xxCBxAxA    

 2756626 105.710625.5)1022(102102 xxCABxAx    

Equating terms gives 

 
76 105.7102   A  

 
56 10625.5102   B  

 01022 6   CA  

Solving the above equation gives 

 375.0A  

 125.28B  

 
51075.3 C  
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The particular solution then is 

 52 1075.3125.28375.0  xxy p  

The complete solution is then given by 

 xx eKeKxxy 0014142.0

2

0014142.0

1

52 1075.3125.28375.0   

Applying the following boundary conditions 

 0)0( xy  

 0)75( xy  

we obtain the following system of equations  

           5

21 1075.3  KK  

         5

21 1075.389937.01119.1  KK  

These equations are represented in matrix form by 

 




























5

5

2

1

1075.3

1075.3

89937.01119.1

11

K

K
 

A number of different numerical methods may be utilized to solve this system of equations 

such as the Gaussian elimination.  Using any of these methods yields 

 




















5

5

2

1

10974343774.1

10775656226.1

K

K
 

Substituting these values back into the equation gives  
xx eexxy 0014142.050014142.0552 10974343774.110775656266.11075.3125.28375.0 

Unlike other examples in this chapter and in the book, the above expression for the deflection 

of the beam is displayed with a larger number of significant digits.  This is done to minimize 

the round-off error because the above expression involves subtraction of large numbers that 

are close to each other. 

 

b) To calculate the relative true error, we must first calculate the value of the exact solution at 

50y . 

 )50(0014142.0552 10775656266.11075.3)50(125.28)50(375.0)50( ey   

  )50(0014142.0510974343774.1  e  

 5320.0)50( y  

The true error is given by 

 tE  = Exact Value – Approximate Value 

 )5852.0(5320.0 tE  

 05320.0tE   

The relative true error is given by 

 %100
Value True

Error True
t  

 %100
5320.0

05320.0



t  

 %10t  
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Example 2 

Take the case of a pressure vessel that is being tested in the laboratory to check its ability to 

withstand pressure.  For a thick pressure vessel of inner radius a  and outer radius b , the 

differential equation for the radial displacement u  of a point along the thickness is given by 

  0
1

22

2


r

u

dr

du

rdr

ud
                                     (E2.3) 

The inner radius 5 a  and the outer radius 8 b , and the material of the pressure vessel is 

ASTM A36 steel. The yield strength of this type of steel is 36 ksi. Two strain gages that are 

bonded tangentially at the inner and the outer radius measure normal tangential strain as  

 00077462.0/  art          

            00038462.0/  brt                (E2.4a,b) 

at the maximum needed pressure. Since the radial displacement and tangential strain are 

related simply by 

 
r

u
t  ,                (E2.5) 

then 

 ''0038731.0500077462.0 aru  

            ''0030769.0800038462.0 bru   

The maximum normal stress in the pressure vessel is at the inner radius ar   and is given by 

 














 arar dr

du

r

uE





2max
1

                         (E2.7) 

where 

 E  Young’s modulus of steel (E= 30 Msi) 

   Poisson’s ratio (  0.3) 

The factor of safety, FS is given by  

  
max

steel of strength Yield


FS               (E2.8) 

a) Divide the radial thickness of the pressure vessel into 6 equidistant nodes, and find 

the radial displacement profile 

b) Find the maximum normal stress and factor of safety as given by equation (E2.8) 

c) Find the exact value of the maximum normal stress as given by equation (E2.8) if it is 

given that the exact expression for radial displacement is of the form  

r

C
rCu 2

1  .   

Calculate the relative true error. 
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Solution 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a)  The radial locations from ar   to br   are divided into n  equally spaced segments, and 

hence resulting in 1n  nodes.  This will allow us to find the dependent variable u  

numerically at these nodes.  

At node i  along the radial thickness of the pressure vessel, 

 
 2

11

2

2 2

r

uuu

dr

ud iii




                                      (E2.9) 

 
r

uu

dr

du ii




 1                                                                       (E2.10) 

Such substitutions will convert the ordinary differential equation into a linear equation (but 

with more than one unknown).  By writing the resulting linear equation at different points at 

which the ordinary differential equation is valid, we get simultaneous linear equations that 

can be solved by using techniques such as Gaussian elimination, the Gauss-Siedel method, 

etc. 

Substituting these approximations from Equations (E2.9) and (E2.10) in Equation (E2.3) 

 
 

0
12

2

1

2

11 







 

i

iii

i

iii

r

u

r

uu

rr

uuu
                                            (E2.11) 

 
     

0
111211

122212











































 ii

ii

i

i

u
r

u
rrrr

u
rrr

                          (E2.12) 

 

Let us break the thickness, ab , of the pressure vessel into 1n  nodes, that is ar   is 

node 0i  and br   is node ni  . That means we have 1n  unknowns. 

We can write the above equation for nodes 1,...,1 n .  This will give us 1n  equations.  At 

the edge nodes, 0i  and ni  , we use the boundary conditions of  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i-1 
i+1 

b 

a 

 i 

 0…… 

 a 

……n 

 b 
i-1 i 

Figure 4  Nodes along the radial direction. 

 

 i+1 
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aruu 0

 

 brn uu 
 

This gives a total of 1n  equations. So we have 1n  unknowns and 1n  linear equations. 

These can be solved by any of the numerical methods used for solving simultaneous linear 

equations. 

 We have been asked to do the calculations for ,5n  that is a total of 6 nodes. This 

gives 

 
n

ab
r


  

                 
5

58 
  

                 6.0 " 

At node "5,0 0  ari , "0038731.00 u                                               (E2.13) 

At node "6.56.05,1 01  rrri                                  (E2.14) 

 
       

0
6.06.5

1

6.0

1

6.5

1

6.06.5

1

6.0

2

6.0

1
2212202























 uuu  

 00754.38851.57778.2 210  uuu                                  (E2.15) 

At node ,2i   "2.66.06.512  rrr  

 
     

0
6.02.6

1

6.0

1

2.6

1

6.02.6

1

6.0

2

6.0

1
3222212


















 uuu       

 00466.38504.57778.2 321  uuu                                  (E2.16) 

At node ,3i  "8.66.02.623  rrr  

 
     

0
6.08.6

1

6.0

1

8.6

1

6.08.6

1

6.0

2

6.0

1
4232222


















 uuu

 
 00229.38223.57778.2 432  uuu                                  (E2.17) 

At node ,4i   4.76.08.634  rrr ″ 

 
       

0
6.04.7

1

6.0

1

4.7

1

6.04.7

1

6.0

2

6.0

1
5242232


















 uuu

 
 00030.37990.57778.2 543  uuu                                  (E2.18) 

At node ,5i  86.04.745  rrr ″ 

 0030769.05 
br

uu ″                                  (E2.19) 

Writing Equation (E2.13) to (E2.19) in matrix form gives 
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100000

0030.37990.57778.2000

00229.38223.57778.200

000466.38504.57778.20

0000754.38851.57778.2

000001



























5

4

3

2

1

0

u

u

u

u

u

u

=



























0030769.0

0

0

0

0

0038731.0

  

  

The above equations are a tri-diagonal system of equations and special algorithms such as 

Thomas’ algorithm can be used to solve such a system of equations. 

 0038731.00 u ″ 

 0036165.01 u ″ 

 0034222.02 u ″ 

 0032743.03 u ″ 

 0031618.04 u ″ 

 0030769.05 u ″ 

b)   To find the maximum stress, it is given by Equation (E2.7) as 

 














 arar dr

du

r

uE





2max
1

 

 psi1030 6E  

 3.0  
 0038731.00  uu ar ″ 

  

r

uu

dr

du
ar






01  

  6.0

0038731.00036165.0 


 

  00042767.0  
The maximum stress in the pressure vessel then is 

 

 












 00042767.03.0

5

0038731.0

3.01

1030
2

6

max

 
                    psi101307.2 4  

So the factor of safety FS  from Equation (E2.8) is  

 6896.1
101307.2

1036
4

3





FS  

c)  The differential equation has an exact solution and is given by the form 

 
r

C
rCu 2

1                                      (E2.20) 

where 
1C  and 2C  are found by using the boundary conditions at ar   and br  . 
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 5
)5(0038731.0)5()( 2

1

C
Cruaru 

 

 8
)8(0030769.0)8()( 2

1

C
Crubru 

  
giving 

 00013462.01 C  

 016000.02 C  
Thus 

 
r

ru
016000.0

00013462.0                                    (E2.21) 

 
2

016000.0
00013462.0

rdr

du
                                  (E2.22) 

 














 arar dr

du

r

uE





2max
1

 

                   

 




































22

6

5

016000.0
0013462.03.0

5

5

01600.0
500013462.0

3.01

1030

 
                   psi100538.2 4  

The true error is 

 44 101307.2100538.2 tE  

                 
2106859.7   

The absolute relative true error is 

 100
100538.2

101307.2100538.2
4

44





t  

       %744.3  

 

Example 3 

The approximation in Example 2 

 
r

uu

dr

du ii




 1  

is first order accurate, that is , the true error is of )( rO  . 

The approximation 

 
 2

11

2

2 2

r

uuu

dr

ud iii




                                      (E3.1) 

is second order accurate, that is , the true error is   2
rO   

 Mixing these two approximations will result in the order of accuracy of  rO   and 

  2
rO  , that is  rO  . 

           So it is better to approximate 



12 

 

  
 r

uu

dr

du ii




 

2

11                                      (E3.2) 

because this equation is second order accurate.  Repeat Example 2 with the more accurate 

approximations. 

Solution 

a)  Repeating the problem with this approximation, at node i in the pressure vessel, 

 
2

11

2

2

)(

2

r

uuu

dr

ud iii




                                                 (E3.3) 

 
r

uu

dr

du ii




 

2

11                                                 (E3.4) 

Substituting Equations (E3.3) and (E3.4) in Equation (E2.3) gives 

 
   

0
2

12
2

11

2

11 







 

i

iii

i

iii

r

u

r

uu

rr

uuu
 

 
       

0
2

11121

2

1
122212
























































  i

i

i

i

i

i

u
rrr

u
rr

u
rrr

               (E3.5) 

At node 5,0 0  ari " 

 0038731.00 u "                                      (E3.6) 

At node "6.56.05,1 01  rrri  

 
           

0
6.06.52

1

6.0

1

6.5

1

6.0

2

6.0

1

6.06.52

1
2212202





































 uuu  

 09266.25874.56297.2 210  uuu                                    (E3.7) 

At node ,2i  2.66.06.512  rrr " 

      
     

0
6.02.62

1

6.0

1

2.6

1

6.0

2

6.0

1

6.02.62

1
3222212



























 uuu              (E3.8) 

 
09122.25816.56434.2 321  uuu

 
At node ,3i  8.66.02.623  rrr " 

      
     

0
6.08.62

1

6.0

1

8.6

1

6.0

2

6.0

1

6.08.62

1
4232222



























 uuu              (E3.9) 

 09003.25772.56552.2 432  uuu  

At node ,4i   4.76.08.634  rrr " 

     
       

0
6.04.72

1

6.0

1

4.7

1

6.0

2

6.0

1

6.04.72

1
5242232
































 uuu           (E3.10) 

 08903.25738.56651.2 543  uuu  

At node ,5i  86.04.745  rrr " 

 0030769.0/5  bruu "                                  (E3.11) 

 

Writing Equations (E3.6) thru (E3.11) in matrix form gives 
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100000

8903.25738.56651.2000

09003.25772.56552.200

009122.25816.56434.20

0009266.25874.56297.2

000001



























5

4

3

2

1

0

u

u

u

u

u

u

=



























0030769.0

0

0

0

0

0038731.0

  

  

The above equations are a tri-diagonal system of equations and special algorithms such as 

Thomas’ algorithm can be used to solve such equations. 

 0038731.00 u " 

 0036115.01 u " 

 0034159.02 u " 

 0032689.03 u " 

 0031586.04 u " 

 0030769.05 u " 

b) 
 r

uuu

dr

du

ar 




 2

43 210  

  
)6.0(2

0034159.00036115.040038731.03 
  

  
410925.4   

  












 4

2

6

max 10925.43.0
5

0038731.0

3.01

1030
  

                     psi100666.2 4  

 Therefore, the factor of safety FS  is  

 
4

3

100666.2

1036




FS  

       7420.1  

c)  The true error in calculating the maximum stress is 

 44 100666.2100538.2 tE  

                 psi128  

The relative true error in calculating the maximum stress is 

 100
100538.2

128
4





t  

      %62323.0  
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Table 1 Comparisons of radial displacements from two methods. 

r  exactu  order1st u  t  order  2ndu  t  

5 0.0038731 0.0038731 0.0000 0.0038731 0.0000 

5.6 0.0036110 0.0036165 1105160.1   0.0036115 2104540.1   

6.2 0.0034152 0.0034222 1100260.2   0.0034159 2108765.1   

6.8 0.0032683 0.0032743 1108157.1   0.0032689 2106334.1   

7.4 0.0031583 0.0031618 1100903.1   0.0031586 3105665.9   

8 0.0030769 0.0030769 0.0000 0.0030769 0.0000 
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